Меню Закрыть

Газоанализатор выхлопных газов автомобиля

Простой автомобильный однокомпонентный газоанализатор предназначен для измерения содержания в выхлопных газах только оксида углерода СО, главным образом использует способ дожигания не полностью сгоревших компонентов в выхлопных газах. Дожигание СО выполняется в измерительной камере прибора при помощи специальной нагретой нити, при этом изменение температуры нити и характеризует содержание СО в газах. Точность показаний такого газоанализатора невелика и зависит во многом от содержания ещё одного компонента — углеводорода СН.

Рисунок 3. Принципиальная схема двухкомпонентного газоанализатора на СО и углеводороды

1 — зонд; 2. 4 — фильтры; 5 — насос для подачи выхлопных газов; 6 — измерительная кювета (камера); 7 — источник инфракрасного излучения; 8 — синхронный двигатель; 9 — обтюратор; 10 — сравнительная кювета (камера) СО; 11 — инфракрасный лучеприемник СО; 12 — мембранный конденсатор; 13, 16 — усилители; 14 — сравнительная кювета (камера) Сn Нm; 15 — инфракрасный лучеприёмник Сn Нm;17, 19 — индикаторы содержания углеводородов и СО; 18 — измерительная кювета (камера) Сn Нm

Определение содержания вредных веществ в отработанных газах современными многокомпонентными газоанализаторами для автомобиля производится без использования химических реактивов, в основном тепловым (инфракрасным) способом измерения. Метод основан на принципе измерения величины поглощения теплового излучения различными составляющими выхлопных газов. Спектрометрический блок современного газоанализатора работает по принципу частичного поглощения энергии светового потока, который проходит через газ. Молекулы любого газа представляют собой колебательную систему, которая способна поглощать инфракрасное излучение только в строго определенном диапазоне волн. Таким образом, если через колбу с газом пропускать стабильный инфракрасный поток, то часть его будет поглощена газом. Более того, в таком случае поглощена будет только та небольшая часть всего спектра светового потока, которую называют абсорбционным максимумом данного газа. При этом, чем концентрация газа в колбе выше, тем большее будет наблюдаться поглощение.

Измерить концентрацию того или иного газа в газовой смеси путем измерения поглощения соответствующей длины волны, позволяет тот факт, что разным газам соответствуют разные абсорбционные максимумы. Таким образом, определить концентрацию каждого из газов в выхлопе двигателя можно измеряя снижение интенсивности светового потока в той части спектра, которая соответствует абсорбционному максимуму определенного газа.

Спектрометрический блок прибора работает следующим образом:

Через измерительную кювету, которая представляет собой трубку с закрытыми оптическим стеклом концами, прокачивают отработанные газы, предварительно отфильтрованные и очищенные от сажи и влаги. С одной стороны трубки устанавливается излучатель, который представляет собой спираль, нагреваемую электрическим током, температура которой строго стабилизируется на одной отметке. Такой излучатель генерирует стабильный поток инфракрасного излучения.

С другой стороны измерительной кюветы устанавливают светофильтры, которые из всего потока излучения выделяют те длины волн, которые соответствуют абсорбционным максимумам исследуемых газов. Поток, после прохождения светофильтров, попадает в приемник ИК-излучения, который измеряет интенсивность этого потока и преобразует её в информацию о концентрации газов в выхлопе автомобиля.

Поскольку данный метод применим только для измерения концентрации СО2, СО и СН, то на следующем этапе смесь выхлопных газов из измерительной кюветы поступает последовательно на датчики электрохимического типа для измерения кислорода O2 и оксидов азота NOX. При этом, электрохимические датчики вырабатывают электрический сигнал с напряжением, пропорциональным концентрации кислорода и оксидов азота.

Таким образом, выполняется замер концентрации всех значимых газов: СО, СН и СО2 –психрометрическим методом, О2 и NОX – электрохимическими датчиками. Обработка сигналов со спектрометрического блока и электрохимических датчиков в современном газоанализаторе выполняется при помощи микропроцессорной электронной схемы.

После обработки сигналов, информация о содержании газов выводится на экран прибора: СО, СО2 и О2 — в процентах, а СН и NОX — в ppm (parts per million), «частей на миллион». Обозначение в ppm связано с тем, что концентрация таких газов в выхлопе крайне мала, и поэтому неудобно использовать проценты для обозначения их количества.

Соотношение между процентами и ppm можно описать следующим равенством:

Так, например, в отработанных газах обычного двигателя внутреннего сгорания легкового автомобиля содержание CH составляет около 0.001%-0.01%. Сложность использования в работе таких значений и предопределило массовое распространение ppm в качестве единицы обозначения концентрации.

Газоанализатор – это сложный прибор, качество которого, в первую очередь, определяется точностью и надежностью спектрометрического блока. Спектрометрический блок – это самая сложная и дорогая часть прибора, поэтому, при эксплуатации очень важно создать условия для его сохранности и долговечности. Сажа, влага и другие механические частицы, оседая на стенках блока, приводят к заметному разбросу показаний спектрометрического блока, а в конечном итоге – к его поломке. Поэтому, до того, как попасть в измерительный блок, выхлопные газы должны пройти специальную подготовку, которая состоит, как правило, из нескольких этапов:

грубая очистка отработанных газов. Выполняется при помощи фильтра, который устанавливается на входе в прибор, либо непосредственно в зонде забора пробы. На этом этапе выхлопные газы очищаются от сажи и других крупных механических частиц.

очистка отработанных газов от влаги. Производится при помощи отделителя влаги, который может иметь самые разнообразные конструкции. На этом этапе от потока газов отделяются, а затем удаляются капли влаги, которые конденсируются на внутренних поверхностях зонда, а также соединительного шланга. Удаление конденсата из накопителя производится либо автоматически, либо вручную оператором.

тонкая фильтрация. При помощи фильтра тонкой очистки производится окончательная фильтрация мельчайших механических частиц. Фильтров тонкой очистки может быть несколько, при этом, они устанавливаются последовательно друг за другом.

Содержание токсичных компонентов в отработавших газах бензиновых двигателей в настоящее время определяется с помощью газоанализаторов, работающих на основе использования инфракрасного излучения. В таких газоанализаторах анализ содержания оксида, диоксида углерода и углеводородов производится с помощью недисперсионных инфракрасных лучей. Физический смысл процесса заключается в том, что эти газы поглощают инфракрасные лучи с определенной длиной волны. Так, например, оксид углерода поглощает инфракрасные лучи с длиной волны 4,7 мкм, углеводороды — 3,4, а диоксид углерода — 4,25 мкм. Следовательно, с помощью детектора, чувствительного к инфракрасным лучам с определенной длиной волны, можно определить степень их поглощения при прохождении анализируемой пробы, в результате чего можно установить концентрации того или иного компонента. Схема газоанализатора, работающего по принципу инфракрасного излучения, показана на рисунке.

Читайте также:  До какого числа нужно переобуться

Отработавшие газы с помощью мембранного насоса через газоотборный зонд, отделитель конденсата и фильтры закачиваются в измерительную камеру. Сравнительная камера при этом заполнена инертным газом и закрыта. Источниками инфракрасного

Рис. Схема газоанализатора: 1 — газоотборный зонд; 2 — отделитель конденсата; 3 — фильтр тонкой очистки; 4 — защитный фильтр; 5 — мембранный насос; 6 — источники инфракрасного излучения; 7 — синхронный электродвигатель; 8 — вращающийся диск обтюратора; 9 — сравнительная камера; 10 — лучеприемник инфракрасного излучения; 11 — усилитель; 12 — мембранный конденсатор; 13 — измерительная камера; 14 — индикаторные приборы

излучения являются нихромные нагреватели, которые нагреваются до температуры около 700 °С. Отражаясь от параболических зеркал, поток инфракрасного излучения, периодически прерываемый обтюратором, приводимым во вращение от синхронного электродвигателя, проходит через измерительную и сравнительную камеры. (Обтюратор необходим для обеспечения ритмичного прерывания инфракрасного излучения.) В измерительной камере происходит поглощение инфракрасного излучения определенного компонента отработавших газов в зависимости от его концентрации. В сравнительной же камере этого не происходит, и возникает разница температур и давлений в обеих камерах. Вследствие этого изменяется емкость мембранного конденсатора 12, расположенного между камерами лучеприемника. Сигнал с конденсатора подается на усилитель 11 и далее на регистрирующий прибор.

По такому принципу работают газоанализаторы типа ГИАМ 27-01, ЕТТ фирмы «Бош» и др.

В более поздних конструкциях газоанализаторов, например АВГ-4, применяется метод измерения, частично отличающийся от рассмотренного выше. Анализируемый газ после очистки проходит через измерительную проточную кювету, где определяемые компоненты, взаимодействуя с излучением, вызывают его поглощение в соответствующих спектральных диапазонах (3,4; 3,9; 4,25 и 4,7 мкм). Инфракрасное излучение аналитических областей спектра определяемых компонентов, подаваемое излучателем, прерывается вращающимся диском обтюратора. Поток излучения характерных областей спектра выделяется приемниками излучения с интерференционными фильтрами и преобразуется в электрические сигналы, пропорциональные концентрации анализируемых компонентов.

Рис. Схема оптическая газоанализатора АВГ-4 (Россия): 1 — излучатель; 2 — кювета; 3 — обтюратор; 4 — приемники излучения с интерференционными фильтрами

Вместо четырех приемников может устанавливаться один (газоанализатор «Автотест»). Интерференционные фильтры в такой конструкции устанавливаются в самом обтюраторе. Инфракрасное излучение аналитических областей спектра определяемых компонентов, подаваемое от источника излучения и проходящее через линзу, поочередно выделяется соответствующими интерференционными фильтрами, установленными на вращающемся диске обтюратора. Этот диск вращается с шагом (углом поворота), равным каждому смонтированному в нем интерференционному фильтру. Кроме того, во вращающемся диске смонтирован «сравнительный» фильтр, которым ни один компонент отработавших газов не поглощается.

Рис. Функциональная схема газоанализатора «Автотест» (Россия): 1 — фотоприемник; 2 — проточная кювета; 3 — интерференционные фильтры; 4 — линза; 5 — источник излучения

В зависимости от концентрации определенного газа (углеводородов, диоксида и оксида углерода) на выходе пироэлектрического приемника формируются последовательные электрические импульсы, пропорциональные концентрации газа. Амплитуда сигналов дает информацию о концентрации определяемых компонентов отработавших газов. Анализ этих компонентов производится в режиме разделения (по очереди). Чем больше концентрация компонента в отработавших газах, тем меньше интенсивность излучения, принятая фотоприемником. Эта информация преобразуется и проходит статистическую обработку в микропроцессоре, а затем поступает на блок отображения информации.

Для исключения дополнительной погрешности от изменения температуры окружающего воздуха и анализируемого газа фотоприемник и кювета защищены теплоизоляционными оболочками и термостатируются системами стабилизации.

В современных многокомпонентных газоанализаторах типа «Автотест», «Инфакар М-1т.01UPEx» (Россия), MGT 5 фирмы МАХА (Германия) кроме измерения содержания оксида (ТО) и диоксида углерода (ТО2), углеводородов может определяться содержание кислорода (О2) и оксидов азота (NO), а также коэффициент избытка воздуха X. Однако молекулы газа с одинаковым количеством атомов не вызывают абсорбцию в инфракрасном диапазоне спектра, поэтому для измерения их концентрации метод инфракрасного излучения неприемлем.

Определение содержания NОж в газоанализаторах осуществляется химическим датчиком, посылающим электрический сигнал, который пропорционален содержанию измеряемых компонентов. Концентрация кислорода определяется электрохимическим методом. В датчике кислорода имеются измерительный и сравнительный электроды, находящиеся в электролите и отделенные от анализируемого газа полимерной мембраной. На измерительном электроде кислород, продиффундировавший через мембрану, электрохимически восстанавливается, и во внешней цепи возникает электрический ток, сила которого пропорциональна парциальному давлению кислорода в газе над мембраной.

Общая схема многокомпонентного газоанализатора показана на рисунке:

Рис. Схема многокомпонентного газоанализатора: 1 — зонд отбора проб отработавших газов; 2 — фильтры; 3 — отделитель конденсата; 4 — вход воздуха; 5 — фильтр с активированным углем; 6 — электромагнитный клапан; 7 — мембранный насос газа; 8 — мембранный насос конденсата; 9 — датчик давления; 10 — газоанализатор GA1 (измерительные камеры СО2, СО); 11 — газоанализатор GA2 (измерительная камера СН); 12 — датчик атмосферного давления; 13 — электрохимический датчик О2; 14 — химический датчик NО; 15 — выход газа; 16 — выход для слива конденсата

Измеряемые отработавшие газы отбираются из системы выпуска автомобиля с помощью зонда. Они закачиваются установленным в измерительном приборе мембранным насосом 7 и подаются через фильтр в отделитель конденсата. Здесь, прежде чем измеряемый газ очистится в следующем фильтре еще раз, отделяются грубые загрязнения и конденсат водяных паров. Второй мембранный насос (8) откачивает конденсат на выход для слива конденсата.

Читайте также:  Выбор пленки для тонировки

Сначала измеряемый газ проходит через газоанализатор GA1. Здесь определяется концентрация СО2 и СО. Затем газ направляется в газоанализатор GA2, который измеряет концентрацию СН. Прежде чем газ покинет измерительный прибор через выход 15, он проходит через датчики 13 и 14, которые измеряют содержание кислорода и оксида азота.

Когда происходит автоматическая установка прибора на «нуль» (так называемая «продувка»), вход измерительной камеры переключается электромагнитным клапаном 6, который установлен перед насосом, с отработавших газов на воздух.

Фильтр 5 с активированным углем защищает измерительный прибор от проникновения углеводородов, содержащихся в окружающем воздухе.

Датчик давления 9 служит для проверки плотности всего газового тракта. Второй датчик давления (12) регистрирует атмосферное давление, которое используется в расчетах.

Во многих странах нормируется коэффициент избытка воздуха X. Это безразмерная величина — отношение массы воздуха, поступающего в цилиндры двигателя при его работе, к массе воздуха, теоретически необходимого для полного сгорания горючей смеси. Этот коэффициент рассчитывается микропроцессором газоанализатора.

В зависимости от комплектации анализатор может также производить:

  • определение частоты вращения коленчатого вала двигателя
  • индикацию и вывод результатов измерений в виде протокола с указанием текущей даты и времени
  • автоматическую коррекцию «нуля» при включении прибора и в дальнейшем по требованию без отключения пробозабор- ной системы от выхлопной трубы автомобиля
  • измерения при отрицательных температурах окружающей среды (до -20 °С) при наличии дополнительной системы подогрева проб измеряемого отработавшего газа

Газоанализаторы могут выдавать информацию о проверяемых параметрах как непосредственно на переднюю панель прибора, так и на экран дисплея компьютера при комплексных проверках автомобилей. При использовании газоанализаторов на станциях гостехосмотра выходные значения измеряемых компонентов выводятся на экран дисплея и автоматически заносятся в диагностическую карту.

Рис. Экран дисплея с данными по составу отработавших газов бензинового двигателя

Газоанализатор может обмениваться данными с программным обеспечением диагностической линии и импортировать туда результаты измерений.

При определении концентрации токсичных компонентов отработавших газов необходимо определять частоту вращения коленчатого вала двигателя и температуру масла в его картере. В некоторых газоанализаторах, например MGT 5 фирмы МАХА, имеются разные способы считывания частоты вращения.

Заборное приспособление газоанализатора содержит гибкий зонд с зажимом для удерживания на срезе выхлопной трубы, предварительный фильтр и шланг достаточной длины для обеспечения доступа к выхлопной трубе.

В рукоятке зонда имеется заглушка, которая предназначена для закрытия зонда и применяется при периодическом контроле герметичности заборного приспособления.

Газовый анализ — это процесс установления качественного и количественного состава газовых смесей. Прибор для проведения газового анализа называется газоанализатором. Газоанализаторы бывают разными, и в сознании автомобилистов, прочно ассоциируются с определением токсичности выхлопных газов автомобиля.

Для этих целей газоанализаторы способны решать широкий диапазон задач по исследованию состояния двигателя и его систем. И, хотя контроль токсичности остается одной из основных функций газоанализатора, его диагностические способности настолько широки, что многие автосервисы используют газоанализаторы, как базовый инструмент диагностики.

Бензиновый двигатель внутреннего сгорания, по сути, является преобразователем химической энергии топлива (бензина). Таким образом, он потребляя топливо и окислитель (кислород, из воздуха) в результате реакции горения (быстрого окисления) топлива, протекающей в камере сгорания,преобразует химическую энергию в механическую (вращение коленвала).

Однако, в результате горения образуются побочные химические продукты. Некоторые из них являются нейтральными по отношению к окружающей среде (кислород О 2 , углекислый газ СО2, пары воды Н2О), а некоторые — вредными (оксид углерода СО, углеводороды CН, различные оксиды азота NОХ).

Эффективность работы двигателя внутреннего сгорания (ДВС) в первую очередь зависит от полноты сгорания топлива, которая, в свою очередь, зависит от многих факторов:

— от оптимальности соотношения топлива и окислителя (за это отвечают системы дозирования и расхода топлива и воздуха, «система впуска»);

— от тщательности перемешивания топливной смеси (зависит от состояния форсунок, конструкции впускного коллектора и камеры сгорания);

— от эффективности предварительного сжатия топливного заряда (определяется состоянием ЦПГ и ГРМ);

— от эффективности воспламенения (зависит от исправности всех элементов системы зажигания).

Малейшее отклонение от нормы или неправильность работы одной из систем двигателя приводит к понижению его эффективности и, вследствие чего изменяется концентрация побочных продуктов сгорания топлива, что сказывается на составе «выхлопа». Т.е. состав отработанных газов – это обобщенный параметр, своего рода индикатор, с помощью которого можно сделать вывод об эффективности работы двигателя, правильности и слаженности работы всех компонентов его основных систем: механической, системы зажигания, газораспределения и отведения газов.

Таким образом, становится понятно, чем обусловлено применение газоанализаторов для диагностики автомобилей.

Немножко истории

В конце 60-х годов в США был принят первый закон, который предусматривал контроль за токсичностью выхлопных газов автомобилей. Однако, газовый анализ применяли для исследования процессов в двигателях задолго до этого. Американцы были первопроходцами в борьбе за экологически чистый транспорт.

Первые газоанализаторы, которые применялись для регулировки двигателей, были однокомпонентными, то есть из целого ряда побочных продуктов сгорания топлива могли замерить только концентрацию СО.

Анализ СО позволял судить о соотношении пропорций в топливо-воздушной смеси, а значит, мог помочь в настройке карбюратора. Первые автомобильные газоанализаторы использовали эффект изменения электропроводности платиновой спирали в газовой среде оксида углерода.

К 70-м годам XX века, во времена, когда вредными выбросам автотранспорта, стало уделяться много внимания, благодаря достижениям науки и техники были созданы более современные, качественные двухкомпонентные газоанализаторы, которые дополнительно могли определять концентрацию еще одного вредоносного продукта сгорания — CН (не сгоревшие частицы углеводородов, входящие в состав топлива). Интересным является то, что содержание углеводорода (СH), а также оксида азота (NOX) определяют в PPM — количестве частиц на миллион, а не в процентах, как все остальные газообразные компоненты. Кроме того, в те времена стал применяться другой, более точный метод определения концентрации, так называемое спектрометрирование выхлопных газов в инфракрасном диапазоне. В современных газоанализаторах до сих пор применяется данный принцип.

Читайте также:  Ошибка 2188 ваз 2114

Дальнейшее совершенствование газоанализаторов происходило в результате постоянно ужесточавшегося контроля токсичности, а также повышения требований к прибору, как к диагностическому инструменту. Так, в результате модернизаций, появились трехкомпонентные газоанализаторы, которые позволяли дополнительно измерять концентрацию диоксида углерода СО2. Это безопасный с точки зрения экологии газ без цвета и запаха — натуральный продукт сгорания углеводородов. Информация о концентрации СО2 с точки зрения определения вредности выбросов в атмосферу не представляет ценности. Однако, такая информация полезна для диагноста, поскольку позволяет судить о полноте сгорания топлива даже в случае, если автомобиль оборудован нейтрализатором выхлопных газов.

Стоит отметить, что немалый импульс развитию приборов газового анализа дала повсеместная установка в выхлопной системе автомобилей каталитического нейтрализатора. Двухкомпонентные газоанализаторы, в изменившихся условиях оказались малоэффективными, поскольку не давали необходимого объема объективной информации о работе двигателя, ведь каталитические нейтрализаторы уменьшали концентрацию именно измеряемых ими параметров — СО и СН.

Современные четырехкомпонентные автомобильные газоанализаторы способны измерять концентрацию СО2, СО, СН и О2. При этом, замеры содержания первых трех компонентов выполняются при помощи спектрометрического метода, а концентрация кислорода определяется электрохимическим датчиком. В более сложных, пятикомпонентных приборах. реализована возможность определения содержания оксидов азота (NOX).

Современные приборы позволяют расчетным путем определять исходный состав топливной смеси даже для двигателей, выхлопная система которых оборудована катализатором. Кроме того, совокупный анализ всех перечисленных параметров позволяет лучше понимать характер процессов, которые происходят в двигателе.

Современные приборы могут иметь стационарное и переносное исполнение, при этом встречаются модели с сетевым питанием, питанием от 12-вольтного автомобильного аккумулятора или комбинированным питанием. Таким образом, существует возможность выполнять замеры состава газов даже в движении автомобиля.

Удобство эксплуатации определяет, также, способ питания устройства. Например, комбинированное питание (сетевое и от 12-вольтового автомобильного аккумулятора) позволяет использовать газоанализатор в различных условиях. Например, при небольших габаритах газоанализатора появляется возможность измерять состав газов при движении автомобиля. Расшифровка записи изменения состава отработанных газов в различных режимах движения автомобиля дает абсолютно другую по качеству информацию для анализа и позволяет прояснить некоторые тонкости рабочих процессов двигателя, которые невозможно выяснить при стационарных испытаниях в боксе в без нагрузки.

Существуют, также, такие вспомогательные устройства, как: встроенный принтер, применяемый для распечатки результатов измерений, порт для подключения и совместной работы с ПК, дополнительные датчики, которые позволяют измерять частоту вращения двигателя и температуру масла.

Не лишними будут, также, наглядные индикаторы, удобные переключатели режимов и автоматизированные режимы подогрева, удаления конденсата, установки «нуля».

В России самыми известными и популярными газоанализаторами, применяемыми для контроля газов ДВС в автосервисах являются приборы серии «ГИАМ-29М» и «ИНФРАКАР-М».

1) «ГИАМ-29М» — это серия переносных автомобильных газоанализаторов, которые предназначаются для измерения содержания: оксида углерода (СО), диоксида углерода (СО2), суммы углеводородов (СН), оксидов азота (NО), кислорода (О2) в выхлопных газах двигателей внутреннего сгорания. ГИАМ-29М имеет несколько исполнений, которые отличаются по количеству контролируемых газов, и главное, предназначаются для разных двигателей.

Так, например, «ГИАМ-29М-1 (-2)» предназначается для измерения содержания газов, перечисленных выше, за исключением оксидов азота (NOX), в выхлопных газах карбюраторных двигателей, а также их настройки. Данные приборы имеют возможность измерения температуры масла, а также количества оборотов коленчатого вала бензиновых ДВС с принудительным воспламенением топлива.

«ГИАМ-29М-3 (-4)» — это переносной газоанализатор контроля отходящих газов судовых силовых установок ДВС. Данный прибор предназначается, помимо основных функций ГИАМ-29М-1 (-2), для вычисления суммарного объемного содержания оксидов азота (NOх), а также расчета коэффициента избытка воздуха по объему.

Измерение СО2, СО, СН проводится по оптико-абсорбционному принципу, а О2 и NOх по электрохимическому. Благодаря встроенному насосу, имеют принудительный забор пробы.

Газоанализаторы серии «ГИАМ-29» оснащаются цифровыми выходами RS-232 и USB, имеют возможность проведения измерения при отрицательных температурах, благодаря внутреннему подогреву, оборудованы дисплеем, на который выводятся результаты измерений, имеют степень защиты IP54 для ГИАМ-29М-1 (-2) и IP42 для ГИАМ-29М-3 (-4).

Оба прибора имеют небольшие размер и вес, а также два источника питания от сети переменного тока 220В и бортовой сети в 12В, благодаря чему могут с легкостью применяться в полевых условиях.

2) «Инфракар-М» — это серия переносных автомобильных газоанализаторов, которые предназначаются для измерения обьемной доли оксида углерода (СО), диоксида углерода (СО2), углеводородов (CН) (в пересчете на гексан), кислорода (О2) в выхлопных газах автомобилей с бензиновыми двигателями внутреннего сгорания.

Во всех газоанализаторах серии «Инфракар-М» реализована возможность измерения частоты вращения коленчатого вала, а для исполнения «Т» ещё и возможность измерения температуры масла. На основании результатов измерений газоанализатор рассчитывает коэффициент избытка воздуха Лямбда.

Газоанализаторы «Инфракар-М» выпускаются в исполнениях для двух классов точности и имеют следующие характеристики:

«Инфракар М1»прибор II класса

«Инфракар М2» — прибор I класса (повышенной точности)

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

error: Content is protected !!
Adblock
detector