Меню Закрыть

Плавное включение на полевом транзисторе

С завода Цератка комплектуется галогенными фарами с отражателями. Слепить встречных водителей колхозно установленным "ксеноном" у меня нет никакого желания, но белый свет фар, мне кажется, куда приятнее для глаз, чем утомляющая желтизна "обычной" лампы. Я предпочитаю галогенные лампы Phillips CrystalVision, которые дают световой пучок белого цвета по остальным параметрам такой же, как у "обычной" лампы — то есть встречные водители не ослепляются при правильной настройке фары. За такой комфорт приходится платить: мало того что они значительно дороже обычных фар, так ещё и ресурс у них не очень велик. Я заметил что момент перегорания обычно совпадает с моментом включения фар. И действительно: наибольшая нагрузка на нить выпадает на тот момент, когда от уличной температуры ей за доли секунды приходится нагреться до нескольких тысяч градусов. Что, если замедлить нагрев нити? — подумал я. Если растянуть момент нагрева нити на несколько секунд, возможно, это увеличит срок её службы?

Идея плавного включения света не нова: при помощи мощного полевого транзистора и широтно-импульсного модулятора такая задача реализовывалась не раз, и в интернете найдётся с десяток различных вариантов схем. Всех их объединят то, что они требуют доработок проводки самого автомобиля: либо вмешательство в проводку автомобиля, с установкой дополнительных схем, либо же всё собирается внутри реле, но к реле идут дополнительные провода.
Я же решил собрать это всё в корпусе штатного реле, используя исключительно штатное подключение.

Требования к схеме:
Немного поразмыслив над тем, как это будет выглядеть в эксплуатации, составил для себя такие требования, которым должна удовлетворять схема:

1) Потреблять как можно меньший ток, когда зажигание выключено. Хотя потребление в районе 5-7 миллиампер, которые требуются для питания стабилизатора и микроконтроллера, было бы приемлемым, хочется минимизировать ток утечки.

2) Обеспечивать плавный, в течение 10-12 секунд, нагрев нитей ламп при первом включении. Когда машина только заведена нить должна нагреваться плавно.

3) Если зажигание не выключалось, то после повторного включения ближнего света более быстрый, в течение 0,5 секунд выход на уровень 80% и затем, в течение секунды выход на уровень 100%. Так как используются лампы H4, то есть совмещающие нити ближнего и дальнего света в одной колбе, при включении или мигании дальним светом, ближний свет отключается. После выключения дальнего света фары остаются достаточно горячими и быстрый накал не сильно сказывается на их работе. В то же время ждать несколько секунд, пока они разгорятся, как при первом старте — неприемлемо: в условиях дорожного движения дорога должна быть освещена.

4) При включенном зажигании и отключении ближнего света в течение 0,5 секунды удерживать уровень 50%. Это позволит не охлаждать нить во время кратких миганий дальним светом.

Схема включения штатного реле

Рассмотрим схему подключения реле.

Схема довольно проста: выключатель с одной стороны, зажигание с другой — управляют обмоткой реле. То есть отключение света происходит как при повороте выключателя, так и при выключении зажигания.

Выключатель — единственный источник постоянного "минуса" на этой схеме. Но по вышеизложенным требованиям после выключения, схема должна "помнить", что зажигание не выключалась, чтобы быстро вернуть ближний свет, когда он понадобиться. Мало того! Схема должна поддерживать нити в полнакала, после того как выключатель ближнего света отключен.

Однако, источником "минуса" могут являться сами фары, чьё сопротивление достаточно мало. Решением является использование паразитного питания через цепь фар. Если установить конденсатор достаточной ёмкости, чтобы он смог удерживать питание управляющего микроконтроллера, пока тот переключается на режим широтно-импульсной модуляции (ШИМ), то он сможет подзаряжаться в моменты, когда ключ разомкнут.

Схема электронного реле

В итоге родилась такая схема:

Описание электронной части
Реле подключено к электрике автомобиля, как показано на рисунке.

Основной силовой элемент — это полевой МОП транзистор с p-каналом VT4. Главное требование к нему — обеспечить коммутацию тока не менее 12Ампер, он должен обладать низким сопротивлением исток-сток в открытом состоянии, но при этом умеренной входной ёмкостью, и открываться при напряжении исток-затвор 5Вольт. В качестве такового выбран IRF9310, он рассчитан на напряжение сток-исток до 30В и ток до 20А (до 16А при температуре 70 градусов). При напряжении исток-затвор 4,5 Вольта обеспечивает сопротивление исток-сток не более 6,8мОм, входная ёмкость 5,2нФ.

Управляет им микроконтроллер ATtiny13A, работающий на частоте 1,2МГц, потребляющий в таком режиме ток менее миллиампера. Его силовые драйверы способны принимать и выдавать ток до 40мА, чего вполне достаточно для управления затвором силового транзистора. ШИМ выход микроконтроллера, работающий на частоте 2,35кГц, подключен к затвору транзистора через резистор R11 130 Ом, который, с учётом сопротивления затвора, а также падения напряжения под нагрузкой на выводе микроконтроллера, ограничивает ток на уровне 33-35мА. Быстрое закрытие транзистора также обеспечивается разрядом затвора через вывод микроконтроллера, но, когда схема отключена, резистор R12 20килоОм держит транзистор закрытым.

Питание осуществляется через линейный стабилизатор 79L05 отрицательного напряжения -5В рассчитанный на нагрузку до 100мА. В данной схеме он является основным потребителем тока: ток покоя в нём может достигать 6 мА. Пульсации тока, вызванные моментами заряда затвора транзистора сглаживает керамический конденсатор C2, ёмкостью 2,2 мкФ (можно использовать и 1 мкФ).

Читайте также:  Пленочный обогреватель на стену отзывы

При отключении ближнего света, затвор транзистора VT3 разряжается через резистор R10 50кОм, и на входе PB3 микроконтроллера посредством резистора R7 устанавливается низкий логический уровень, оповещая микроконтроллер, что выключатель фар отключен. В этот момент, если силовой транзистор VT4 открыт, то конденсатор C1 не заряжается, но его заряда хватает, чтобы микроконтроллер успел переключиться в ШИМ-управление силовым транзистором, тем самым давая возможность, подзарядиться конденсатору через фары.

Отвод тепла
Спецификация на силовой транзистор IRF9310 говорит, что при напряжении затвор-исток -4,5 Вольта, сопротивление исток-сток составит максимум 6,8 мОм. Из расчёта с запасом, что фары потребляют 11А, мощность, рассеиваемая на транзисторе составит максимум 0,822 Ватта. То есть корпус нагреется на 16,5 градусов, относительно ножек. Задача состоит в эффективном отводе тепла от места пайки транзистора. Спецификация указывает, что даже при пайке на 1 квадратный дюйм (квадрат 25,4 х 25,4мм) меди, толщиной 35мкм повышение температуры составит 50 градусов на Ватт, т.е. 41 градус в нашем случае. Хотя в малом корпусе реле не удастся разместить такую площадку для охлаждения, однако отводить тепло можно наружу через ножку реле, припаяв сток транзистора как можно ближе к месту крепления ножки.

Эксперимент при комнатной температуре показал, что, хотя транзистор и нагревается, несколько секунд удержать палец на нём можно. То есть его температура около 55-60 градусов, что на 30-35 градусов больше комнатной. Уровень вполне приемлемый.

Изготовление реле
Как оказалось, Kia использует свои какие-то уникальные формы реле, которые не встретишь в магазинчиках на улице, лишь под заказ и за большие деньги. Реле симметричное четырёхногое: две ноги по диагонали – катушка, две другие ноги – замыкаемые контакты. В общем случае, это удобно: не нужно думать, какой стороной втыкать руле, оно будет работать и так и эдак. Но в нашем случае соблюдение полярности играет важную роль, если повернуть реле не той стороной, то это может привести к перегоранию силового транзистора. Что ж, придётся нарисовать на корпусе предупреждающую надпись и быть внимательным при установке.

Но разбирать реле не пришлось. Как оказалось, в моей машине предусмотрена опция дневных ходовых огней. Всё что нужно – это вытащить заглушку, по форме точь-в-точь реле, и на её место вставить обычное реле. Я так и сделал. В руках у меня оказалась эта заглушка-шунт (каталожный номер 95220-3A300).

Для вытравливания использовал Лазерно-Утюжную Технологию (ЛУТ), отпечатав шаблон на лазерном принтере, на глянцевой фотобумаге для струйной печати.

Это будет ещё один вариант схемы плавного включения фар.

Для начала немножко теории.

Многие, наверное, замечали, что перегорание ламп накаливания в подавляющем большинстве случаев приходится на момент их включения. Отчего же это происходит?

Виноват в этом, разумеется, Георг Ом со своим законом. Дело в том, что сопротивление холодной нити лампы в 10-12 раз ниже, чем в разогретом состоянии. По закону Ома, ток в цепи обратно пропорционален сопротивлению: I = U / R. Значит ток в цепи каждой лампы тоже в момент включения в 10-12 раз выше номинального, то есть, для стандартной лампы 55Ватт он может достигать 60 Ампер! Но в течение каких-то сотых долей секунды нить нагревается, сопротивление увеличивается и ток падает до номинального уровня. Обычно этот момент проходит так быстро, что ничуть не вредит ни реле, ни предохранителю, которые подводят ток к двум лампам и рассчитаны на ток куда ниже 120 Ампер.
Рассмотрим чуточку подробнее, что же страшного может случиться в этот краткий миг включения. Для этого рассмотрим нить лампы под электронным микроскопом:

Спиралька не идеальная, какие-то участки её оказываются потоньше, какие-то потолще.

Очевидно, теплоёмкость тонких участков оказывается меньше, а значит, при таком же протекающем токе, они быстрее нагреваются.

Как было упомянуто ранее, сопротивление нагретой спирали больше сопротивления холодной. Ток, как мы знаем, одинаков во всех участках цепи, а по тому же закону того же Георга, падение напряжения на участке цепи равно произведению значений силы тока и сопротивления этого участка. U = I * R. Это значит, что падение напряжения на втором, "тонком" участке будет больше чем на других.
Мощность высчитывается как произведение тока на напряжение: P = I * U. А это значит что на этом самом тоненьком участке цепи будет рассеиваться самая большая мощность.
В результате, пока соседние участки не спешa нагреваются, тоненький отрезок спирали успеет немного выгореть и стать ещё тоньше к следующему включению лампы. А значит при следующем включении различие в нагреве разных участков спирали будет ещё более выраженным. Ситуация будет ухудшаться с каждым включением, пока не произойдёт:

Выход прост: ограничить рассеиваемую мощность, уменьшив ток в цепи. Существует несколько разных вариантов как этого добиться, и самые распространённые из них это:

1. Использование NTC термистора и реле. Термистор около 2-5 Ом (при 25 градусах) включается последовательно с лампой, и часть мощности рассеивается на нём, нагреваясь он уменьшает своё сопротивление, в то время как лампа — плавно разгорается и увеличивает сопротивление. Через некоторое время падение напряжения на лампе окажется достаточным, чтобы замкнуть обмотку включенного параллельно с ней реле. Контакты реле замыкают термистор, исключая его из цепи и передавая тем самым всю мощность лампе.

Читайте также:  Как обнулить чек на ниссане

2. Использование мощного полевого транзистора с конденсатором на затворе. Принцип аналогичен предыдущему. Но вместо термистора ток ограничивается полевым транзистором, затвор которого медленно заряжается, и ток в цепи плавно повышается. При этом на транзисторе в момент включения рассеивается значительное количество тепла, что требует его охлаждения. Однако в полностью открытом состоянии, за счёт низкого сопротивления сток-исток, почти вся мощность идёт на лампу, в результате дополнительное реле не требуется.

3. Широтно-импульсная модуляция. Этот вариант отличается от предыдущих тем, что управляющая схема не ограничивает ток, что уменьшает рассеиваемую на ней мощность, а значит и требования к охлаждению. Вместо этого схема при помощи того же полевого транзистора подаёт ток краткими импульсами, длительностью в несколько десятков микросекунд. За такое короткое время участки нити не успевают нагреться до опасных значений, а в те моменты когда ток через цепь не идёт, тепло с более нагретых участков нити успевает перераспределиться на менее нагретые участки, в результате чего сопротивление разных участков цепи выравнивается.

Именно этот вариант я выбрал для реализации.

Вот что мне хотелось добиться от своей схемы плавного включения света:

1) Распознавание первого включения после включения зажигания. У меня на машине лампы H4 — ближний и дальний в одной колбе. Если зажигание только включено, то свет должен разгораться плавно, чтобы плавно разогреть холодные спираль и колбу. Зато, если зажигание не выключалось, а ближний свет был выключен и включен снова — а такое происходит при включении дальнего света — разогрев должен происходить быстрее, дабы дорога была освещена.

2) Удержание в пол-накала в течение секунды после выключения. В моменты мигания дальним светом, ближний также выключается. Такой алгоритм поможет нити лишний раз не остывать и быстро вернуть свет на прежний уровень.

3) Максимальное снижение энергопотребления схемой при отключении зажигания. Токи утечки должны быть минимальными.

4) Схема должна быть собрана в корпусе штатного реле. Схема не должна требовать вмешательства в проводку, дополнительных проводочков-подключений и полностью заменять штатное реле, а при необходимости — быть заменённой обратно простой перестановкой реле.

Схема подключения штатного реле

Определившись с требованиями, я стал изучать, как подключено штатное реле

Оказалось, в моей машинке выключатель света замыкает минусовой провод обмотки, а реле зажигания — плюсовой.

Очевидно, что при выключении света, будет отключен также и "минус" для питания схемы. Однако, согласно моим хотелкам, схема должна продолжать работать в этой ситуации, мало того — даже держать фары включенными в пол-накала! Идея заключается в том, чтобы брать "минус" для питания схемы с фар.

Схема электронного реле

В итоге родилась такая схема:

Логика управления реализуется микроконтроллером ATtiny13A. Для питания используется линейный стабилизатор 79L05 отрицательного напряжения -5 Вольт, то есть у всей схемы общим является "плюс".

VD3 и VD4 обеспечивают схему "минусом". Это "быстрые" диоды. Пока выключатель света замкнут, минус идёт с него. Когда он разомкнут, микроконтроллер управляет фарами в режиме широтно-импульсной модуляции. В моменты, пока транзистор закрыт, "минус" появляется через лампы фар.

VT4 — силовой pMOSFET, который и подаёт ток на фары. IRF9310 хоть мал и невзрачен на вид, но сопротивление сток-исток у него в открытом состоянии максимум 6,8 миллиОма. Он легко тянет 20 Ампер, а импульсами и все 160.

VT1 — этот друг обесточивает схему, когда зажигание выключено. Благодаря ему потребление тока в выключенном состоянии меньше микроампера.

C1 — конденсатор питает схему в те моменты когда выключатель света разомкнут, а транзистор VT4 открыт. Схема уверено работает и при 15 микрофарадах.

R4 — нужен чтобы снизить ток, который хлынет в разряженный C1 при первом включении. Это снизит нагрузку на транзистор и на сам конденсатор. R6 — позволяет ещё дополнительно снизить ток через выключатель.

VT2 — нужен для информирования МК о том что зажигание выключено и конденсатор вот-вот разрядится. В открытом состоянии он замыкает вывод PB4 микроконтроллера на линию -5 Вольт. В закрытом, вывод PB4 микроконтроллера подтягивается к "питанию" встроенным резистором. На его месте можно было бы использовать простой диод, катодом идущий на вход микроконтроллера, а сам вход подтянуть к "GND" резистором. Однако возможна ситуация когда на линиях зажигания и питания фар окажется значительная разность потенциалов — например, при повреждении реле фар. В этом случае такое подключение убило бы микроконтроллер. Использование транзистора немного усложняет схему, но зато исключает подобные казусы.

VT3 — точно также информирует МК, но о том, что замкнут выключатель света. Он, наоборот, притягивает вход PB3 к "питанию", а в закрытом состоянии этот вход притянут резисторм R7 к "GND". Когда выключатель разомкнут, микроконтроллер должен как можно быстрее перейти к ШИМ-управлению лампами, чтобы давать возможность конденсатору подзарядится в моменты, когда VT4 закрыт.

Пару слов об отводе тепла

Здесь используется один силовой транзистор. По расчётам, при токе 11 Ампер (взято с запасом) и его сопротивлении 6,8мОм (максимум) на нём будет рассеиваться 0,822 Ватта. Что достаточно немного. Однако в тесном корпусе реле негде разместить радиатор. Для эффективного отвода тепла, сток транзистора припаивается как можно ближе, под обильным припоем, к ножке корпуса, которая обладает хорошей теплопроводностью и отводит тепло наружу, в массивную колодку реле и далее в корпус машины. Эксперимент показал, что даже в неподключенном к колодке реле, транзистор нагревается всего на 30-35 градусов.

Читайте также:  Где находится температурный датчик на ваз 2114

К слову, штатное реле потребляет ток около 150 миллиампер, и рассеивает почти 2 Ватта тепла.

Почти одновременно с этой задумкой, я обнаружил, что если вынуть в блоке предохранителей шунт и вставить в его место нормальное реле, то включится опция дневных ходовых огней. Реле в KIA довольно занимательные, симметричные: втыкай хоть так, хоть эдак. Пара контактов по диагонали — это обмотка, а по другой диагонали — замыкаемые. Это даёт некоторые неудобства: электронное реле нельзя втыкать "абы как".

В результате в руках у меня оказался шунт, который внешне мало отличим от реле, а кишочки у него выглядят так:

Он куда удобнее для обработки и размещения внутри всяких схем, чем обычное реле. Поработав немного ножовкой и надфилями получилось что-то такое:

Вначале по разработанной схеме был собран прототип:

На просторах интернета имеется множество схем плавного розжига и затухания светодиодов с питанием от 12В, которые можно сделать своими руками. Все они имеют свои достоинства и недостатки, различаются уровнем сложности и качеством электронной схемы. Как правило, в большинстве случаев нет смысла сооружать громоздкие платы с дорогостоящими деталями. Чтобы кристалл светодиода в момент включения плавно набирал яркость и также плавно погасал в момент выключения, достаточно одного МОП транзистора с небольшой обвязкой.

Схема и принцип ее работы

Рассмотрим один из наиболее простых вариантов схемы плавного включения и выключения светодиодов с управлением по плюсовому проводу. Помимо простоты исполнения, данная простейшая схема имеет высокую надежность и невысокую себестоимость. В начальный момент времени при подаче напряжения питания через резистор R2 начинает протекать ток, и заряжается конденсатор С1. Напряжение на конденсаторе не может измениться мгновенно, что способствует плавному открытию транзистора VT1. Нарастающий ток затвора (вывод 1) проходит через R1 и приводит к росту положительного потенциала на стоке полевого транзистора (вывод 2). В результате происходит плавное включение нагрузки из светодиодов.

В момент отключения питания происходит разрыв электрической цепи по «управляющему плюсу». Конденсатор начинает разряжаться, отдавая энергию резисторам R3 и R1. Скорость разряда определяется номиналом резистора R3. Чем больше его сопротивление, тем больше накопленной энергии уйдет в транзистор, а значит, дольше будет длиться процесс затухания.

Для возможности настройки времени полного включения и выключения нагрузки, в схему можно добавить подстроечные резисторы R4 и R5. При этом, для корректности работы, схему рекомендуется использовать с резисторами R2 и R3 небольшого номинала. Любую из схем можно самостоятельно собрать на плате небольшого размера.

Элементы схемы

Главный элемент управления – мощный n-канальный МОП транзистор IRF540, ток стока которого может достигать 23 А, а напряжение сток-исток – 100В. Рассматриваемое схемотехническое решение не предусматривает работу транзистора в предельных режимах. Поэтому радиатор ему не потребуется.

Вместо IRF540 можно воспользоваться отечественным аналогом КП540.

Сопротивление R2 отвечает за плавный розжиг светодиодов. Его значение должно быть в пределах 30–68 кОм и подбирается в процессе наладки исходя из личных предпочтений. Вместо него можно установить компактный подстроечный многооборотный резистор на 67 кОм. В таком случае можно корректировать время розжига с помощью отвертки.

Сопротивление R3 отвечает за плавное затухание светодиодов. Оптимальный диапазон его значений 20–51 кОм. Вместо него также можно запаять подстроечный резистор, чтобы корректировать время затухания. Последовательно с подстроечными резисторами R2 и R3 желательно запаять по одному постоянному сопротивлению небольшого номинала. Они всегда ограничат ток и предотвратят короткое замыкание, если подстроечные резисторы выкрутить в ноль.

Сопротивление R1 служит для задания тока затвора. Для транзистора IRF540 достаточно номинала 10 кОм. Минимальная емкость конденсатора С1 должна составлять 220 мкФ с предельным напряжением 16 В. Ёмкость можно увеличить до 470 мкФ, что одновременно увеличит время полного включения и выключения. Также можно взять конденсатор на большее напряжение, но тогда придется увеличить размеры печатной платы.

Управление по «минусу»

Выше переведенные схемы отлично подходят для применения в автомобиле. Однако сложность некоторых электрических схем состоит в том, что часть контактов замыкается по плюсу, а часть – по минусу (общему проводу или корпусу). Чтобы управлять приведенной схемой по минусу питания, её нужно немного доработать. Транзистор нужно заменить на p-канальный, например IRF9540N. Минусовой вывод конденсатора соединить с общей точкой трёх резисторов, а плюсовой вывод замкнуть на исток VT1. Доработанная схема будет иметь питание с обратной полярностью, а управляющий плюсовой контакт сменится на минусовой.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

error: Content is protected !!
Adblock
detector