Меню Закрыть

Подключение конденсатора на холодильнике

Конденсатор в холодильнике представляет собой особый теплообменный аппарат, который является важной частью холодильного оборудования. В нем пары хладагента охлаждаются до определенной температуры, после чего, переходят в жидкое состояние.

Чаще всего конденсатор устанавливается на задней стенке устройства. Но существуют и другие вариант расположения этого компонента. От работоспособности конденсатора зависит очень многое, в том числе и работоспособность всего холодильника.

Принцип и особенности работы конденсатора

Холодильный агент нагревается во время работы и перед тем, как он поступает в конденсатор. Но после прохождения данного изделия он охлаждается. Конденсатор является трубопроводом, который обычно обладает видом змеевика.

Именно внутрь его и поступают пары от холодильного агента. На змеевик оказывают влияние некоторые окружающие факторы, например, воздух. В крупных холодильных агрегатах для этих целей используется вода. Как правило, внешняя поверхность змеевика не может самостоятельно охладиться при помощи воздуха. Благодаря увеличению количества ребер увеличивается поверхность змеевика. Таким образом, процесс охлаждения осуществляется намного быстрее. Обычно змеевик находится горизонтально, а хладагент подается в верхний виток.

Если холодильник абсолютно новый, то холод в нем генерируется посредствам поглощения тепла во внутренних камерах, а поглощенное тепло при этом выделяется в окружающую атмосферу. Если холодильник не может нормально выделить тепло в течение определенного времени, то его работоспособность может нарушиться. Таким образом, может произойти накопление тепла, компрессор перегреется, а в конденсаторе повысится уровень давления. Когда будет расти давление, появится дополнительная нагрузка на компрессор, чего лучше не допускать.

Почти все современные холодильники, например, торговой марки Zanussi обладают продуманным составом компонентов. Там используются надежные конденсаторы. Но даже они при неправильной эксплуатации могут поломаться. Но профессионалы обычно могут устранить проблему весьма быстро.

Основные типы конденсаторов

Конденсатор может находиться на задней части холодильника. Этот вариант является наиболее распространенным среди бытовых моделей. Это конструктивное исполнение обладает большим количеством преимуществ, но и не лишено некоторых недостатков. Обычно холодильники торговой марки Toshiba оснащаются именно таким типом конденсатора. Его основным достоинством можно назвать возможность проведения простой очистки. Можно избавиться от загрязнений практически любого типа. Лучше всего чистить конденсатор при помощи обыкновенного пылесоса без специальных насадок. Благодаря этому удается предельно качественно очистить щели конденсатора, которые могут забиваться пылью. Важно сохранять чистоту не на поверхности решетки, а в щелях. Современные мастера говорят о том, что обычно на конденсаторах находится очень много пыли, которая может приводить к поломкам. Как правило, люди даже не думают о чистке щелей до того момента, пока не произойдет поломка. Иногда эксплуатация может продлиться несколько лет без чистки. Но рано или поздно устройство поломается, потому что из-за пыли оно может очень сильно перегреваться, в особенности в жаркое время года.

Также лучше не прислонять холодильник слишком быстро к стене, чтобы разогретый воздух от конденсатора мог без препятствий подниматься наверх. Производители, например, компания Bosch обычно предусматривают установку специальных ограничителей, которые не дают возможности устанавливать холодильник в непосредственной близости около стены.

Конденсатор может находиться с боковой части холодильника. Данный вид исполнения также обладает и плюсами, и минусами. Такое расположение конденсатора обладает самой низкой вероятностью возникновения каких-либо нарушений теплообмена по причине скопления грязи и напыли. Конденсатор, который находится в таком месте, обычно прячется за специальную металлическую пластину, которая обеспечивает защиту изделия от коррозионных процессов и окисления.

К недостаткам такого расположения можно отнести не очень большое тепловыделение. А в случае утечки холодильного агента могут возникнуть некоторые неприятности, потому что конденсатор скрыт за решеткой. Чтобы продлить эксплуатационный срок такого оборудования не нужно располагать его боковой стороной вплотную около любого предмета. Надо гарантировать устройству свободную циркуляцию воздуха. Есть модели, в которых тепло выделяется одновременно с обеих сторон. В этом случае надо поставить устройство так, чтобы с двух сторон был свободный доступ для выхода тепла. Если не соблюдать элементарные правила эксплуатации, может понадобиться ремонт холодильников на дому. Но опытные профессионалы смогут без проблем уладить практически любые проблемы, связанные с конденсаторами любого типа.

Конденсатор может находиться снизу оборудования. К преимуществам такого расположения можно отнести тот факт, что охлаждение осуществляется активным образом. Лучше всего можно охладить любую деталь, если обдувать ее при помощи вентилятора. Но это возможно только тогда, когда поступает не нагретый воздух. Ключевым недостатком такого конденсатора можно назвать быстрое засорение отверстий, которые используются для всасывания воздуха. Если щели забиваются, то не просто охладить конденсатор. Последствия могут быть самыми печальными. Чтобы такой холодильник работал без проблем и максимально долго, нужно исключить вероятность засорения отверстий конденсатора.

Конденсаторы могут обладать воздушным охлаждением. Есть модели с пластинчатыми ребрами. Листотрубные модели являются очередным типом такого оборудования. Вне зависимости от конкретного вида конденсатора нужно соблюдать правила эксплуатации холодильника. Если возникли хотя бы малейшие проблемы с работой, нужно обратиться за помощью к профессионалам. Лучше не усугублять поломку и не запускать ее. Ведь намного проще устранить ее на начальной стадии. Опытные мастера смогут быстро обнаружить проблему и устранить ее при помощи специального современного оборудования.

Благодарность была бы кстати

Мы успешно продвигаем

Быстрый и недорогой ремонт холодильников с выездом мастера в Рязани на дом — holodryazan.ru.

Прямые Руки — недорогой ремонт холодильников на дому в Новосибирске и области.

PermHolidilnik.ru — лучший ремонт холодильников на дому в Перми. Звоните, заказывайте!

Магазин Альфа Сервис в Казани предлагает термостаты для холодильников в наличии и под заказ.

Ремонт холодильника

Самый долгоработающий прибор в наших квартирах это не компьютер или телевизор, а обыкновенный холодильник. Холодильник работает круглосуточно, а его работу мы оцениваем 2-3 раза в сутки. Если холодильник сделан качественно, то его проблем с охлаждением пищи у нас не возникает по крайней мере лет 20. У многий еще стоят старенькие советского производства холодильные агрегаты. И как все в этой жизни ломается холодильник внезапно, но вместо того, чтобы выбрасывать столько лет служивший верой и правдой аппарат, можно сделать попытку его восстановить. В силу ремонта говорит и тот факт, что новая вещь будет хоть снаружи и хороша, а надежность вряд ли будет соперничать с советским аппаратом.

Принцип работы холодильника можно рассмотреть на примере наполненного газового баллона. Баллон наполнен газом под высоким давлением и при этом температура газа и баллона одинаковые и соответствуют температуре улицы. Если открыть вентиль, то газ начнет выходить и при этом вентиль станет резко охлаждаться. Это связано с тем, что газ в баллоне под давлением имеет очень высокую по температуре точку кипения, а на улице при малом давлении эта точка очень низкая. Как если бы вскипятить чайник с водой и начать подниматься в гору, то вода в чайнике продолжала бы кипеть, ведь с падением давления точка закипания уменьшается. Вот и получается, что в баллоне газ – жидкость, а как только выходит из баллона – газ тут же вскипает. При кипении газ улетучивается, а поверхность с которой он улетучился замерзает, ведь газ отбирает с этой поверхности тепло. Так вот возвращаясь к баллону. Если теперь баллон соединить с охладителем, где будет охлаждаться нужные нам продукты, и насосом, который будет гонять газ из баллона через охладитель в баллон, то ничего не получится. Нужно как-то создать перепад давления. Перепад давления можно устроить при помощи дросселя – тоненькой трубки. Трубка не даст большому количеству жидкого газа проходить, станет сужением, а после прохода по трубке газ поступает в испаритель, где места много и где газ будет вскипать.

Итак, вот такой холодильник работал у меня, пока вдруг не остановился и не потек. Кстати, если из-под холодильника течет вода — это не поломка, просто шланг отвода конденсата из камеры сместился. Шланг связывает желоб для отвода конденсата из камеры холодильника и емкость на компрессоре.

Особо интересных данных задняя панель не сообщает. Холодильник стоил огромную по тем деньгам сумму — 355 рублей, что составляло 3 месячных зарплаты инженера. Холодильник питается от сети переменного тока частотой 50 Гц с фазным напряжением 220 В и потребляет 155 Вт.

Общая электрическая схема представлена на рисунке. Схема содержит два температурных реле с датчиками температуры (РТК). Один датчик контролирует температуру холодильной камеры и включает и отключает компрессор холодильника. Второй датчик содержит кнопку, обзываемую "разморозка". Если нажать на эту кнопку, то реле отключит компрессор, а вот обратно оно включится только после того, когда температура в холодильнике достигнет примерно +10 С.

В качестве веществе которое забирает тепло у продуктов используется хладон-12. Хладон – это газ, но если его сжать, то газ перейдет в свое другое состояние – жидкость. Суть холодильника очень проста: теплые продукты помещаются в теплоизолированный шкаф, стенки которого снабжены трубками по которым течет холодная жидкость. В результате того, что теплообмена с наружным помещением нет, тепло от продуктов нагревает жидкость внутри холодных трубок и продукты охлаждаются. В результате циркуляции жидкости по холодильнику вещество нагревается и переходит в состояние газа. Для поддержания нужной температуры компрессор должен работать периодически. На периодичной работы влияет температурный датчик с помощью которого мы увеличиваем, либо уменьшаем температуру в холодильнике.

Сначала сжатый компрессором перегретый хладагент в парообразном состоянии поступает в конденсатор — длинную зигзагообразную трубку. Здесь он отдает свое тепло окружающему воздуху и, остывая, превращается в жидкость. Затем жидкий хладон поступает в испаритель, который находится внутри морозильной камеры. Там при низком давлении он начинает кипеть и испаряться. А раз испаряется — значит, отбирает из камеры тепло и создает холод. Испарившийся хладон вновь засасывается компрессором, и цикл повторяется.

Основным потребителем электрической энергии в холодильнике является лампочка и компрессор. Лампочка в холодильнике нужна для освещения продуктов для тех категорий граждан которые питаются по ночам. Лампочка срабатывает при открывании дверцы холодильника. Никакого действия на работу компрессора она не оказывает.

Компрессор служит для перехода хладона из газообразного состояния в жидкое. Компрессор представляет собой герметичный бак в котором располагаются электрический однофазный двигатель и механизм по сжижению газа.

Компрессор представляет собой герметичный и неразборный прибор. Фреон – газ циркулирующий по замкнутому кольцу внутри всей гидравлической системы холодильника. Обычно при утечке фреона на испарителе — пластине внутри холодильника, нарастает шуба – большая глыба льда, а компрессор переходит практически на круглосуточный режим работы. Местные шабашники лечат этот синдром закачкой фреона и тем самым на некоторое время ликвидируют следствие поломки. Спустя немного времени фреон вновь выходит и шуба нарастает вновь. По-хорошему при подобной поломке нужно искать причину – плохую пайку или треснувшую трубку.

Компрессоры выпускаются множеством модификаций. Представленный компрессор снять с холодильника «Минск-15».

Разобрать компрессор можно при помощи болгарки. Если срезать верх шляпки, то можно увидеть вертикально расположенный двигатель и блок с одним цилиндром. Трубка с фреоном согнута в спираль чтобы при вибрации был люфт трубок. Если плотно закрепить трубки, то при вибрации они сломаются.

Резка верхней части ничего не даст в плане снятия двигателя, поэтому можно срезать нижнюю часть компрессора. Вид снизу дает представление об охлаждении всего компрессора при работе. В нижней части расположена трубка по которой прогоняется фреон, охлаждая сам двигатель. Кроме трубки по бокам видны амортизирующие крепежи на которых закреплен двигатель. В результате того, что двигатель превращает вращающееся движение вала в поступательное движение поршня компрессора за счет эксцентрика на валу двигателя, возникают вибрации всего механизме. Чтобы компенсировать вибрацию на валу рядом с эксцентриком выбран металл таким образом чтобы уровнять массы при вращении, уравновешивая всю систему. Также двигатель надевают на пружины, надетые на штыри. Гайки не применяются. Двигатель ограничивается сверху шляпкой. Тут же расположен разъем подключения двигателя.

Первый спил прошел в нижней части шляпки и для разборки он был бесполезен, как и второй распил. Для выемки двигателя из корпуса нужно сделать разрез под шляпкий или посередине бака. Вынутый двигатель весь в масле. На нем четко прослеживаются обмотки – рабочая и пусковая. Пусковая обмотка выполнена толстым проводом и имеет маленькое сопротивление. Рабочая обмотка – прямая противоположность пусковой: маленький диаметр и большое сопротивление.

После снятия кожуха двигатель и компрессор представляют собой плачевное зрелище.

Если отвернуть четыре винта, крепящие корпус компрессора, можно разделить компрессор и двигатель. На двигателе виден эксцентрик и уравновешивающая пластина. На компрессоре виден сам поршень с отверстием под эксцентрик, который накачивает фреон в систему.

Камер на компрессоре всего 4. Через одни забирается фреон из системы, через другие с помощью поршня фреон сжимается и выталкивается обратно в систему.

Примерно так устроен компрессор холодильника.

Однофазный электрический двигатель имеет две обмотки соединенные последовательно с выводом от средней точки.

Для запуска такого двигателя нужно подать на 0 общий либо фазу, либо ноль, а на 1 пуск и 2 рабочий либо ноль, либо фазу соответственно. Иными словами напряжения между выводами 1 и 0 должно составлять 220 В, между выводами 0 и 2 – 220 В, а между выводами 1 и 2 напряжение должно равняться нуля. Если напряжения поданы верно, то двигатель дернется и ротор (та часть двигателя которая вращается) начнет вращение. Направление вращения зависит от того какой конец рабочей обмотки соединен с общим выводом. В холодильнике запустить двигатель в другую сторону нельзя, потому что общий вывод находится внутри герметичного компрессора.

После начала вращения ротора необходимо сразу отключить пусковую катушку. В противном случае двигатель перегреваться и изоляция обмоток прогорит, что вызовет межвитковое замыкание и вывод двигателя из строя. Для отключения пусковой катушки достаточно отсоединить вывод 1, тогда между выводами 0 и 2 напряжение равно 220 В и двигатель не остановится.

Пусковая катушка необходима только для запуска двигателя и вовсе не нужна при его работе. Для точного определения исправности двигателя используют омметр, значения сопротивлений видны на приборе.

Пусковой ток двигателя компрессора холодильника составляет 4,8 А, а рабочий ток 1,02 А. При этом сопротивление пусковой обмотки 13,1 Ом и рабочей 47,5 Ом. Небольшие колебания в 0,5 Ом допустимы. При этом нужно учитывать, что чем мощнее холодильник, тем величины сопротивлений и токов будут выше.

Все производители по-разному видят свои компрессора и не всегда пусковая обмотка больше по сопротивлению, чем рабочая. У многих зарубежных произведетелей рабочая обмотка больше пусковой. Эта разница бывает всего лишь в несколько ом. Все зависит от производителя и конкретного еомпрессора. На лэйбе компрессора можно заметить три точки, по подключению похожие на разъем компрессора.

C — COM, означает точку соединения двух обмоток, т.е. центральная точка;

S — START, пусковая стартерная обмотка;

R — RUN или M — MAIN, рабочая обмотка.

Привожу для сравнения сопротивление обмоток компрессора холодильников различных производителей.

Управление двигателем осуществляется пусковым реле. Реле располагается в пластмассовой коробочке справа от монтажной распределительной коробки.

При включение однофазного электрического двигателя, через рабочую обмотку протекает большой пусковой ток. Пусковой ток в 3-7 раз больше номинального тока двигателя, он длится лишь некоторое время пока ротор двигателя не начнет вращение и не выйдет на номинальную скорость. Катушка реле соединена последовательно с рабочей обмоткой двигателя, поэтому при большом токе в катушке возникнет магнитный поток, который вытолкнет сердечник катушки вверх. На конце сердечника находится контактная пластинка, подключающая пусковую обмотку двигателя к сети. Как только скорость вращения ротора выйдет на запланированную величину, пусковой ток в рабочей обмотке упадет, магнитный поток в катушке пускового реле упадет и пластина опустится, отсоединив пусковую обмотку двигателя от сети.

При перегреве двигателя, т.е в том случае если ротор двигателя не успел набрать скорость вращения, либо если сам двигатель неисправный предусмотрено аварийное отключение электрического двигателя от сети. Защита выполнена в виде витков проволоки из нихрома. Нихром – сплав металлов никеля и хрома. При пропускании тока через него нихром нагревается и выделяет тепло, но не горит. Именно поэтому в большинстве электронагревательных приборах находится именно этот металл.

При протекании больших пусковых токов нихром нагревает биметаллическую пластинку, расположенную под ним, пластинка нагревается и изгибается, отсоединяя обе обмотки двигателя от сети. Через некоторое время нихром остынет, биметаллическая пластинка вернется в свое нормальное положение и реле вновь повторит запуск холодильника. Если на даче у вас есть холодильник и во время грозы, либо когда поблизости работает сварочный аппарат холодильник рычит и не включается, то знайте, что не хватает напряжения ротору набрать нужные обороты и срабатывает защита.

Запуском и отключением холодильника командует датчик температуры, который дает команду на запуск путем подачи потенциала на общий вывод двигателя. Датчик температуры представляет из себя герметичную трубку наполненную газом, корпус со штоком для регулирования температуры при которой происходит срабатывания и выводами для подключения проводов.

Иногда датчика ставят два — один на одну камеру, а второй на вторую камеру. Либо второй датчик используется для функции разморозки, которая заключается в том, что холодильник не включится пока его полностью не разморозят.

При сборке и присоединении всех проводов нужно соблюдать правильность электрической схемы. Для наглядного восприятия все провода обозначены. Из сети приходит 220 В (коричневый и синий). Двигатель компрессора питается также от 220 В. От сетевого коричневого провода через голубой провод (3) питание попадает на двигатель. Второй провод на двигатель берется от сетевого коричневого провода через серый провод на датчик температуры, выход с датчика белым проводо, соединенным с черным проводом (0). Чтобы проверить работает ли компрессор без датчика температуры нужно подать напряжение 220 В на голубой (3) и черный (0) провода, подходящие к пусковому реле.

Для особо дотошных у кого нет пускового реле можно взять три куска провода. Один подключить к выводу (0) на вилке компрессора, второй — к концу рабочей обмотки (2) и третий — к концу пусковой обмотки (1). Свободные концы проводов (1) и (2) нужно соединить вместе. Желательно провод на вывод (1) компрессора снабдить тумблером, но можно и без него. Теперь нужно подать питание. Провод на вывод (0) вставить в один контакт розетки, а соединенные вместе провода на выводы (1) и (2) — в другой. Почти сразу нужно отсоединить провод на вывод (1) от сети. Время срабатывания реле примерно 0,5 с. Отсоединять лучше тумблером, но можно и перекусить бокорезами с изолированными ручками. Компрессор начнет работу. Чтобы запустить его вновь потребуется еще раз перекусить провод. Проводов много не бывает, поэтому если нет реле — собрать схему включения через тумблер или автоматический выключатель. Работает двигатель от 220 В, которые подаются на контакт (0) и (2). ТОлько для запуска следует подключить к контакту (1) тот же провод, который идет на контакт (2).

Практически все однофазные двигатели можно запусть и от конденсатора. Дело в том, что однофазные двигатели работают от щеток (одна обмотка статора и одна якоря), пусковых реле (две обмотки статора неравнозначных) и конденсатора (две обмотки статора). Конденсатор включается между концами обеих обмоток по схеме приведенной ниже.

В среднем емкость конденсатора берется из расчета 22 мкФ на 1 кВт мощности двигателя. Получается, что на двигатель холодильника мощностью 155 Вт нужен конденсатор 3 мкФ. Конденсатор нужен бумажный. Поставленный конденсатор на 160 В не грелся и не взрывался, но трещал, посему ищем конденсатор на минимум 250 В. Индикатором работы будет служить нагрев обмоток. Причина по которой для запуска компрессора холодильника применяют реле — более высокая надежность старта. И действительно, при тестах двигатель стартовая если резко коммутировать сетевые провода, а вот при пуске с помощью выключателя иногда двигатель не вращался, а гудел. Это связано с тем, что не применялся пусковой конденсатор. Пусковой конденсатор включается параллельно рабочему конденсатору и только на момент запуска двигателя. Емкость пускового конденсатора в 3 раза выше емкости рабочего конденсатора.

Приятного ремонта. Будьте осторожнее с электричеством.

Перед изучением дальнейшего материала, напомним, что рабочие конденсаторы, в отличие от пусковых, должны находиться под постоянным напряжением. Подключение в схему производится последовательно с пусковой обмоткой, что позволяет увеличить крутящий момент на валу двигателя.

Схема РSС (рис.53.40) является самой простой, поскольку в ней отсутствует пусковое реле. Рабочий конденсатор постоянно находится под напряжением. Чем больше емкость данного типа конденсатора, тем больше его размеры, поэтому она ограничивается небольшими значениями (как правило, не более 30 мкФ).

Поэтому схему РSС применяют в небольших двигателях, с незначительным моментом сопротивления на валу.

Как только на схему подается напряжение, конденсатор дает толчок и двигатель запускается. При его работе обмотка остается постоянно под напряжением вместе с последовательно подключенным конденсатором. Это позволяет повышать крутящий момент при работе двигателя и ограничивает силу тока.

Схема СТР (РТС) используется в роли обычного пускового устройства. Ее можно усовершенствовать, добавив постоянно подключенный конденсатор (рис.53.41). при подключении схемы к сети, сопротивление термистора СТР будет низким и конденсатор Ср не повлияет на процесс запуска. Получается, что момент сопротивления на валу будет небольшим и потребуется выравнивание давлений при остановке.

Сопротивление СТР резко увеличивается в конце запуска, при этом вспомогательная обмотка остается подключенной к сети через конденсатор Ср, позволяющий увеличить крутящий момент при работе двигателя.

С учетом того, что конденсатор в данной схеме все время находится под напряжением, применять пусковые конденсаторы в ней нельзя.

В схеме RSIR предусмотрено пусковое реле без конденсатора. Чаще всего в схеме пусковое реле является регулятором тока, иногда регулятором напряжения. Из-за отсутствия конденсатора пусковой момент в схеме достаточно слабый, поэтому ее в основном используют в домашних холодильниках с капиллярным расширительным устройством, которое обеспечивает выравнивание давления при остановках.

Схема СSIR является аналогом RSIR и отличается только наличием пускового конденсатора (рис.53.43). Ее используют в тех случаях, когда возрастает риск повышения момента сопротивления при запуске. Возрастание пускового момента на валу двигателя осуществляется пусковым конденсатором. Схему также используют в холодильных контурах с термостатическим ТРВ.

Схема СSR является аналогом схемы СSIR и отличается наличием рабочего конденсатора Сm (рис.53.44). Она одновременно обеспечивает увеличение пускового и крутящего момента при работе двигателя.

Во время запуска параллельно установленные конденсаторы Сm и Cd (емкость которых складывается) запускают двигатель, после чего он выходит на нормальный режим. Далее конденсатор Cd исключается из работы, а пусковая обмотка остается запитанная только через конденсатор Сm.

Применение рабочего конденсатора позволяет увеличить крутящий момент двигателя при его работе. Например, его используют в составе теплового насоса, у которого возрастает степень сжатия (момент сопротивления) в зимнее время.

Вместе с этим рабочий конденсатор увеличивает cos? двигателя, что уменьшает количество потребляемого тока.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

error: Content is protected !!
Adblock
detector