Меню Закрыть

Привод механизма переключения передач

Управление механизмом переключения передач осуществляется с помощью привода, который может быть непосредственным, дистанционным, полуавтоматическим и автоматическим.

Непосредственный привод (рис. 12.12, а) применяется на грузовых автомобилях с расположением двигателя перед кабиной и легковых заднеприводных автомобилях с передним расположением двигателя. Он представляет собой рычаг 2 со сферическим пальцем в нижней чести, устанавливаемый на крышку картера, в которой расположен механизм

Рис. 12.12. Приводы управления коробкой передач: а — непосредственный; б — дистанционный коробки передач грузового автомобиля; в — дистанционный коробки передач легкового автомобиля; 1 — пружина рычага переключения передач; 2, 10, 23 — рычаги переключения передач; 3 — крышка рычага; 4, 20, 26 — защитные чехлы; 5 — рукоятка рычага; 6 — промежуточный рычаг; 7 — ось промежуточного рычага; 8 — сухарь предохранителя включения первой передачи и заднего хода; 9 — опора рычага переключения передач; 11 — переключатель крана управления делителем; 12 — трос; 13 — передняя тяга; 14 — промежуточная тяга; 15 — регулировочный фланец; 16 — опора; 17 — головка передней тяги; 18 — рычаг наконечника; 19 — тяга привода; 21 — шаровая опора рычага; 22 — сферический палец рычага; 24 — ось шарнира; 25 — корпус шарнира тяги привода; 27 — шток выбора передач; 28 — картер сцепления; 29 — рычаг штока выбора передач; 30 — пружина рычага выбора передач; 31

корпус механизма выбора передач

переключения передач. С правой стороны опоры ввернут установочный винт, который фиксирует рычаг в нейтральном положении. Снизу рычаг поджимается пружиной / к сферической опоре, находящейся в крышке 3, благодаря чему он стремится занять вертикальное положение. Промежуточный рычаг 6 уменьшает ход верхнего конца рычага 2 переключения передач при включении первой передачи и передачи заднего хода, вследствие чего ход рычага при включении всех передач одинаков. Рычаг установлен на оси 7, закрепленной гайкой в крышке коробки передач.

На легковых переднеприводных автомобилях и грузовых автомобилях с расположением кабины над двигателем применяется дистанционный привод.

Дистанционный привод управления коробкой передач автомобиля КамАЗ-5320 (рис. 12.12, б) состоит из рычага 10 переключения передач, опоры 9 рычага переключения передач, укрепленной на переднем торце блока цилиндров двигателя, передней 13 и промежуточной 14 тяг управления, которые перемещаются в сферических втулках из металлокерамики, уплотненных резиновыми кольцами и поджатых пружиной. Сферические опоры передней тяги размещены в расточке кронштейна опоры рычага переключения передач и в картере маховика. Опора промежуточной тяги установлена на картере сцепления. На задний конец промежуточной тяги навернут на резьбе и закреплен двумя стяжными болтами регулировочный фланец 15. Такой привод позволяет поднимать кабину, не изменяя нейтрального положения рычага переключения передач.

Дистанционный привод переднеприводного легкового автомобиля (рис. 12.12, в) состоит из рычага 23 переключения передач, установленного на шаровой опоре 21, тяги 19 привода, шарнира тяги привода и штока 27 выбора передач, на котором установлен рычаг 29 штока переключения передач. Рычаг 29 взаимодействует с механизмом переключения передач. Шарнир позволяет перемещать шток 27 в продольном направлении и совершать качательные движения при изменяющемся наклоне тяги 19. Тяга надевается на наконечник шарнира, имеющий мелкие шлицы, и зажимается хомутом. Благодаря этому имеется возможность регулировать положение рычага переключения передач.

Полуавтоматический гидравлический привод используется в управлении гидромеханическими коробками передач для выбора режима работы, который задает водитель с помощью специального контроллера. Полуавтоматический пневматический привод используется для управления дополнительными коробками передач (мультипликатором и демультипликатором). Предварительный выбор передач в таком приводе осуществляется водителем, а последующее включение передачи происходит при нажатии на педаль сцепления или переключении передач в основной коробке передач.

Привод управления делителем коробки передач автомобиля КамАЗ-5320 (рис. 12.13) состоит из следующих элементов: редукцион-

Из прневмопривода тормозной системы

Рис. 12.13. Полуавтоматический пневматический привод управления делителем: I — пневмоусилитель привода сцепления; 2 — упор штока клапана; 3 — клапан включения делителя; 4 — кран управления; 5 — редукционный клапан; 6 — механизм переключения передач; 7 — пневматический силовой цилиндр; 8 — воздухораспределитель; Л, Б — полости; Я, В — положения

рычага управления делителем

ного клапана 5, крана управления 4, клапана 3 включения делителя, воздухораспределителя 8, силового цилиндра 7 и механизма 6 переключения передач.

Редукционный клапан 5 поддерживает давление 0,39—0,45 МПа воздуха в контуре привода управления делителем.

При переводе рычага управления делителем в положение В или Н золотник крана управления 4 переместится и направит воздух в одну из полостей справа или слева от воздухораспределителя 8, в результате чего произойдет перемещение его золотника в одно из крайних положений.

При полностью выключенном сцеплении упор 2 штока клапана нажмет на кран 4, и воздух от редукционного клапана 5 через воздухораспределитель 8 поступит в полости А или Б силового цилиндра 7, поршень которого связан с механизмом 6 переключения передач. Произойдет включение делителя или его выключение.

Механизмы управления КП служат для включения передачи, ее переключения в зависимости от меняющихся условий работы трактора и ее выключения — перевода в режим нейтральной передачи. Их конструкция зависит от метода переключения передач — с остановкой трактора ( с разрывом потока мощности) или без его остановки (без разрыва или с кратковременным разрывом потока мощности).

Рис. 4.7. Схемы составной планетарной КП

В первом случае механизм управления КП служит:

  • для установки шестеренкареток или жестких блокировочных муфт (при наличии шестерен постоянного зацепления) в рабочее или нейтральное положение;
  • их фиксации от осевых перемещений;
  • предотвращения их самопроизвольного включения или выключения;
  • предотвращения одновременного включения двух передач.

Механизм управления представляет собой механическую рычажно­тяговую систему, управляемую мускульной силой тракториста.

Во втором случае в КП установлены только шестерни постоянного зацепления, а их блокировка может осуществляться тремя способами: с использованием синхронизаторов или фрикционных многодисковых муфт с гидроподжатием (для КП с неподвижными осями валов) или аналогичных фрикционных муфт и тормозов (для ПКП). В двух последних случаях гидравлическое управление КП состоит в подаче масла под давлением в бустер необходимой муфты или тормоза и его отводе из них при их раз­блокировании, а также в предотвращении самопроизвольного их включения и выключения.

Механизмы управления ступенчатыми коробками передач.
Принципиальные схемы механизмов управления КП рычажно-тяговой системы и отдельных ее элементов показаны на рис. 4.8. Осевое передвижение шестерен-кареток 16 или жестких блокировочных муфт и муфт синхронизаторов производится управляющими вилками 15, которые вводятся в кинематическую связь с рычагом 18 управления КП. Концы вилки 15, как правило, входят в кольцевую проточку М на наружной поверхности каретки 16 (или блокировочной муфты), не мешая ее вращению, но ограничивая ее осевое перемещение по валу, фиксируя тем самым включенное или нейтральное ее положение. Вилки 15 в большинстве случаев жестко связаны с цилиндрическими 14 или прямоугольными 28 (рис. 4.8,г) ползунами. На ползунах имеются специальные прямоугольные пазы Н, в которые вводится конец короткого плеча управляющего рычага 18. Внешний, более длинный и удобно расположенный к трактористу конец рычага обычно имеет пластмассовую головку 6.

Читайте также:  Установка евроручек на приору

Встречаются конструкции (рис. 4.8,в), когда каретка находится в глубине КП и прямую ее связь с ползуном осуществить сложно. Тогда применяют промежуточный двуплечий рычаг 22. В этом случае обычно на головке вилки 23 делают фрезерованный боковой паз Р, посредством которого рычаг 22 перемещает ее по неподвижной направляющей оси 24. Необходимо отметить, что подобное перемещение головки вилки по направляющей оси иногда применяется для непосредственного ее соедине­ния с рычагом управления КП или с промежуточным прямоугольным ползуном.

Жесткое соединение управляющей вилки 15 с цилиндрическим ползуном (рис. 4.8,е) осуществляется чаще всего посредством фиксирующего болта 29 или стяжного фиксирующего болта 30. Болты обычно стопорятся проволокой 31. Управляющие вилки с прямоугольными ползунами обычно соединяются стыковой электросваркой.

Число внешних рычагов управления КП зависит от ее кинематической схемы, но обычно не превышает двух. В продольно расположенных двух- и трехвальных КП применяют только один рычаг. В поперечно расположенных трехвальных КП с реверсированием передач, а также в составных и специальных, используют два рычага: один для переключения передач в диапазоне, а другой для выбора диапазона передач в редукторе.

Наиболее распространен рычаг управления с шаровым шарниром (рис. 4.8,а), образованным шаровым утолщением 3 рычага 18 и сферическим гнездом 7 поддерживающей колонки. Штифт 8, входящий из колонки в вертикальный паз утолщения 3, предотвращает осевое вращение рычага 18, но позволяет устойчивое его продольное и поперечное качание для управления ползунами. Сферический колпак 4 и пружина 5 обеспечивают плотную защиту шарового шарнира от пыли и грязи. Иногда сверху колпака устанавливают защитный гофрированный резиновый чехол для лучшей защиты внутренней полости КП от проникновения внутрь абразива и влаги.

При нейтральной передаче пазы 11 ползунов 14 и 28 располагаются в одной поперечной плоскости, чтобы нижний конец рычага 18 мог свободно перемещаться из одного паза в другой при его поперечном качении. Для включения передачи необходимо боковым перемещением рычага 18 ввести его нижний конец в зацепление с необходимым ползуном. Затем, двигая рычаг 18 вперед или назад, переместить его с вилкой 15 до полного зацепления включаемой пары шестерен на полную ширину зубчатого венца или блокировочной муфты.

Чтобы исключить одновременное перемещение двух соседних ползунов перемещение рычага 18 часто происходит по направляющим прорезям О пластинчатых кулис 17 в пределах, необходимых для включения каждой передачи. Обычно кулиса 17 устанавливается под шаровой опорой, но встречается ее установка и сверху последней. Широко в качестве кулисы применяют и неподвижные разделительные планки 27 (рис. 4.8,г) с прямоугольным боковым пазом Т, установленные между прямоугольными ползунами 28 вилок включения. При "нейтральной передаче" пазы Н и Т соответственно ползунов 28 и планок 27 совпадают, и нижний конец рычага 18 имеет возможность свободного поперечного качания до упоров в боковые ограничительные планки 26, не имеющие пазов.

При включении передачи нижний конец рычага 18 вместе с пазом ползуна смещается относительно пазов Т на разделительных планках, как показано на схеме, что исключает одновременность перемещения двух ползунов. Иногда для этой цели применяют блокирующие замки (рис. 4.8Д), состоящие из двух шариков 25, расположенных с небольшим зазором в боковых соосных отверстиях между каждой парой цилиндрических ползунов 14. При нейтральной передаче они находятся против полукруглых проточек С ползунов 14. При включении какой — либо передачи передвигающийся ползун сдвигает шарики 25, зажимая ими кольцевые проточки С смежных ползунов, блокируя возможность их перемещения, как показано на схеме.

Для закрепления кареток 16 (или соответствующих блокировочных муфт) в рабочих положениях, а также для предотвращения их самопроизвольного выключения при работе трактора их ползуны 14 и 28 удерживаются пружинными фиксаторами. Для этого фиксаторы чаще всего выполняются в виде ступенчатого стержня 11 (рис. 4.8,а) с нижней конусной головкой 13, которая под действием пружины 12, постоянно прижата к ползуну. Иногда фиксатором служит шарик 20 (рис. 4.8,в), поджимаемый пружиной 21.

Для включения или переключения передач тракторист должен при­ложить усилие к рычагу 18 и сдвинуть ползун 14 или 28, выжимая при этом фиксатор из выточки Л, и перемещать рычаг до тех пор, пока фикса­тор вновь не опустится в смежную выточку, что будет соответствовать включенной или выключенной передаче. При этом обычно слышен щелчок фиксатора.
В ряде механизмов управления КП применяются блокировочные устройства, исключающие возможность перемещения ползунов при вклю­ченном сцеплении во избежание поломок зубьев подвижных шестерен и муфт.

Часто этот механизм блокировки (рис. 4.8,а) состоит из блокировоч­ного валика 10, располагаемого над концами стержней 11 фиксаторов, управляемого системой рычагов 9 и тяг 2 от педали 1 сцепления. На валике 10 имеется продольный паз К или местные сверления, лежащие в поперечных плоскостях, проходящих через ось фиксаторов. При включенном сцеплении, как показано на схеме, концы стержней 11 упираются в цилиндрическую поверхность валика 10, что исключает возможность их подъема, а, следовательно, и переключения передач.

При полностью выключенном сцеплении валик 10 повернут в положение, когда продольная плоскость паза К совпадает с продольной плоскостью осей фиксаторов. В этом случае фиксаторы могут подниматься при переключении передач. Иногда (рис. 4.8,6) блокировочный валик 19 имеет не вращательное движение, а осевое. В этом случае ползуны 14 блокируются непосредственно цилиндрической частью валика 19, как показано на схеме. При выключении сцепления последний сместится в положение, когда его фрезерованные участки П не будут препятствовать перемещению ползунов 14, то есть переключению передач.

В современных конструкциях КП предусматриваются устройства, исключающие возможность запуска двигателя при включенной передаче. Обычно они имеют датчик положения рычага управления, включенный в электрическую схему магнето пускового двигателя или стартера.

Синхронизаторы. Синхронизатором называют узел механизма управления КП, служащий для бесшумного и безударного включения передач. В основу действия синхронизатора положен принцип использования сил трения для выравнивания (синхронизации) угловых скоростей соединяемых деталей, образующих передачу. Обычно синхронизаторы имеют конические поверхности трения, хотя встречаются и дисковые.

Различают синхронизаторы простые и инерционные.

Простые синхронизаторы не препятствуют включению передачи до полного выравнивания угловых скоростей соединяемых деталей КП, что обычно сопровождается появлением ударных нагрузок и шума.

Инерционные синхронизаторы получили наибольшее распространение в КП тракторов и автомобилей, так как имеют устройство блокировки для безударного и бесшумного включения передачи.

Инерционный синхронизатор состоит из трех основных элементов:

выравнивающего — фрикционного устройства, поглощающего энергию касательных сил инерции вращающихся масс

включающего — зубчатой муфты, включающей передачу.

блокирующего — устройства, препятствующего включению зуб­чатой муфты до полного выравнивания угловых скоростей соединяемых деталей.

Читайте также:  Регулировка клапанов ваз 2109 инжектор цена

На рис. 4.9 представлен инерционный синхронизатор, получивший распространение в КП тракторов и автомобилей. На шлицах переднего конца вторичного вала 10 неподвижно закреплена ступица 8 синхронизатора, на зубчатом венце которой установлена муфта 3 включения, управляемая вилкой 4. Зубчатый венец имеет три продольных паза 9, в которые установлены ползуны 7. Последние имеют в средней наружной части выступы, а на внутренней стороне — проточки в виде паза.

Ползуны 7 своими выступами прижаты к кольцевой проточке внутренней поверхности муфты 3 двумя пружинными кольцами 5, отогнутые концы которых заведены в паз одного из ползунов. Тем самым осуществляется упругая фиксация ползунов 7 в средней части муфты 3 при нейтральном ее положении.

С обеих сторон ступицы 8 синхронизатора установлены латунные блокирующие кольца 2 с зубчатыми венцами. На торцах колец выполнены три продольных паза 11, ширина которых несколько больше ширины ползунов 7. В пазы колец 2 входят концы ползунов 7, чем обеспечивается их совместное вращение.

На внутренней конической поверхности блокирующих колец 2 нареки3 резьба с мелким шагом, которая служит для разрушения масляной пленки и увеличения коэффициента трения между конусами блокирующих колец и наружной конической поверхностью ступиц зубьев шестерен 1 и 6. На ступицах шестерен 1 и 6 нарезаны зубья, такие же, как и на зубчатых венцах ступицы 8 и колец 2. Торцы зубьев блокирующих колец, обращенные к ступице 8, имеют скосы. Такие же скосы выполнены на «убьях муфты 3 и на зубьях ступиц шестерен.

Функцию включающего элемента выполняет муфта 3, выравнивающего — конусные поверхности ступиц шестерен 7 и 6 и колец 2, блокирующего — кольца 2.

Конструкция позволяет включить одну из двух передач: прямую (при блокировке вала К) и шестерни 7) и замедленную (при блокировке нала К) и шестерни 6). Рассмотрим работу синхронизатора при включении, например, прямой передачи.

Для включения передачи водитель выключает ФС и перемещает ры­чаг ом управления ползун, связанный с вилкой 4. Муфта 3 перемещается влево вместе с ползунами 7 и кольцом 2, пока последнее не войдет в контакт с шестерней 1. По мере увеличения усилия на рычаге, пружинные » оньца 5 деформируются, выступы ползунов выходят из проточки муфты, и она перемещается влево вдоль ползунов. Если угловые скорости кольца и шестерни одинаковые, то муфта, проходя через зубья кольца 2, входит в зацепление с зубьями шестерни 1, включая тем самым прямую передачу. Скосы на торцах зубьев при необходимости обеспечивают правильную и взаимную ориентацию блокируемых элементов за счет их поворота.

Рис. 4.9. Инерционный синхронизатор: а — конструкция; б — детали; 1 — шестерня ведущего вала, 2 — конусиое блокируюшее кольцо 3 — муфта, 4 — вилка, 5 — пружинное кольцо; б — шестерня передачи, 7 — ползун, 8- ступица; 9 продольные пазы в ступице, 10 — вторичный вал КП; 11 — пазы в торце блокирующего кольца

Если угловые скорости кольца 2 (вала 10) и шестерни 1 разные, то под действием возникшей силы трения между конусами кольцо 2 поворачивается на некоторый угол относительно муфты 3 в пределах зазора между ползунами 7 и пазами 11. При этом зубья кольца 2 занимают положение препятствующее дальнейшему перемещению муфты 3. С косы, выполненные на торцах зубьев муфты и кольца 2, обеспечивают передачу осевого усилия со стороны муфты на конусные поверхности трения. Одновременно с этим на зубьях кольца возникают реакции, стремящиеся вернуть кольцо в исходное состояние по отношению к муфте. Однако углы скосов зубьев выбраны так, что пока угловые скорости шестерни 1 и вала 10 не станут равными, момент трения между шестерней 1 и кольцом 2 сделать это не позволит.

Таким образом, синхронизатор позволяет включить передачу только после выравнивания угловых скоростей блокируемых элементов. Заметим, что вал 10 всегда кинематически связан с ведущими колесами. Скорость его вращения зависит от скорости трактора, и изменить ее с помощью синхронизатора практически невозможно. Шестерни 1 и 6 связаны с ведомыми частями ФС, которые при полностью выключенном сцеплении могут вращаться лишь по инерции. Поэтому всегда при работе синхронизатора выравнивание скоростей блокируемых элементов происходит за счет изменения скорости элемента, связанного с ведомыми частями ФС.

На рис. 4.10,а представлена другая конструкция инерционного синхронизатора. Он состоит из подвижной включающей муфты 1 с зубчатыми венцами 6, которая устанавливается на шлицах ведомого вала КП. Диск муфты 1 имеет три отверстия для полуцилиндров 5 фиксаторов, соединяющих его с двумя конусными кольцами 2, и три отверстия с коническими поясками для блокирующих пальцев 3, жестко связывающих конусные кольца. В средней части пальцы имеют проточку с коническими краями. Между двумя полуцилиндрами 5 каждого фиксатора расположены пружины 4.

В нейтральном положении (рис. 4.10,6) муфта 1 находится посредине между шестернями 7 и 9. При включении передачи муфта 1, перемещая полуцилиндры 5 фиксаторов, прижимает конусное кольцо 2 к конусу шестерни 7 (рис. 4.10,е). Если муфта 1 и шестерня 7 вращаются с разными угловыми скоростями, то за счет зрения между коническими поверхностями кольцо 2 проворачивается относительно диска муфты 1 в пределах разницы диаметров отверстия в диске для блокирующего пальца и проточки пальца. Контакт конических фасок отверстий и пальцев препятствует осевому перемещению муфты относительно кольца и не дает возможности включить передачу. Только после выравнивания угловых скоростей шестерни 7 и муфты1, когда трение между коническими поверхностями исчезает, появляется возможность относительного поворота муфты и кольца под действием осевой силы на поверхностях фасок. Муфта перемещается дальше, сжимая при этом пружины 4 полуцилиндров 5 фиксаторов, а ее зубья входят в зацепление с внутренним зубчатым венцом 8 шестерни 7 (рис 4.10,г).

При использовании синхронизаторов в качестве механизмов переключения передач требуется определенное время для выравнивания скоростей блокируемых элементов. При этом ФС выключено и мощность к и» лущим колесам не подводится. Однако, в большинстве своем, условия работы трактора таковы, что если во время его движения выключить ФС, (и фактор практически сразу же остановиться. Т.е синхронизатор непозволяет трактору при выполнении им основных работ переключать передачи «на ходу». Это не относится к колесным тракторам, выполняющим транспортные работы. Здесь условия работы трактора схожи с условиями для прочих транспортных машин, когда машина может продолжать движение некоторое время после выключения сцепления по инерции. Этим объясняется, что синхронизаторы в отечественных тракторных коробках передач до последнего времени практически не использовались.

Имеется опыт их применения на зарубежных колесных тракторах для переключения передач транспортного диапазона.

Механизмы переключения передач без остановки трактора. При переключении передач без остановки трактора чаще всего применяют многодисковые фрикционные муфты с гидроподжатием. На рис. 4.11,а показана конструкция наиболее распространенной двухбарабанной фрикционной муфты для управления двумя передачами.

Две гидроподжимные фрикционные муфты установлены в кольцевых расточках ведущего барабана 10, закрепленного на шлицах ведущего вата А. С двух сторон барабана расточены соосные кольцевые полости, в которые установлены поршни — нажимные диски 8 с внутренним резиновым кольцом 15 и наружным разрезным чугунным кольцом 9. В торцах барабана 10 прорезан ряд продольных пазов, в которые входят наружные шлицы ведущих стальных дисков 12. Такие же шлицы выполнены на внешней кромке поршня 8, предотвращающие его проворачивание в цилиндре.

Читайте также:  Как избежать штрафа с камеры

В промежутках между ведущими дисками установлены ведомые диски 13 с накладками из порошкового фрикционного материала и внутренними шлицами. Диски 13 устанавливаются на шлицах ступиц соответствующих шестерен 4 и 17 постоянного зацепления, свободно вращающихся на двух шарикоподшипниках 2. Последние установлены на промежуточных шлицевых втулках 1 вала А, разделены дистанционным кольцом 18 и зафиксированы относительно шестерен стопорными кольцом 3. Сквозные сверления В между шлицами служат для лучшей смазки поверхностей трения муфт.
Внутренняя кольцевая полость цилиндра, в которую подается масло для включения передачи, называется бустером Д. Включение муфты про­исходит под давлением масла, поступающего в бустер из распределитель­ного устройства (на схеме не показано) по продольным Б и радиальным Г сверлениям вала А. Под давлением масла происходит перемещение поршня 8, пакет дисков перемещается до упора в диск 6 и сжимается. Диск 6 фиксирован стопорным кольцом 14, установленным в кольцевой проточке барабана 10. При этом происходит сжатие возвратных пружин 7, установленных в сверлениях ступицы поршня 8 и поджимаемых к опорному диску 5, фиксированному стопорным кольцом 16.

При выключении передачи бустер муфты сообщается со сливом, поршень под действием возвратных пружин перемещается и освобождает диски. Для более быстрого удаления масла из бустера при выключении передачи в поршне 8 установлен сливной клапан. Наибольшее распространение имеет шариковый клапан 20, схема работы которого показана на рис. 4.11,6. Пока давление масла Рd в бустере, действующее и на шарик 19, не дает центробежной силе Рц открыть отверстие клапана, то он находится в положении 1, препятствуя вытеканию масла из бустера. При выключении передачи давление масла в бустере снижается и тогда под действием центробежной силы Рц шарик займет положение II, открывая отверстие для быстрого вытекания масла. Масло под действием центробежной силы выбрызгивается внутрь полости муфты, смазывая ее поверхности трения.

Для улучшения размыкание дисков фрикционной муфты при ее выключении иногда ее металлические диски без фрикционных покрытий или накладок делают слегка вогнутыми. В других случаях (рис. 4.11 ,в) на шлицевых выступах 23 этих дисков 12 посредством заклепок 21 устанавливают специальные разжимные пластинчатые пружины — лапки 22.

Гидравлическая система КП кроме подачи масла в определенном порядке к бустерам фрикционных муфт предназначена также для смазки деталей, фильтрации и охлаждения масла. Основными агрегатами гидравлической системы управления КП являются: насос, фильтр, редукционный клапан, регулирующий давление в системе, маслораспределитель для подачи масла к бустерам и другие устройства, способствующие переключению передач без остановки движения трактора.

Обычно предусматривается два варианта привода насоса системы: основной — от двигателя, и запасной — от ведущих колес. Запасной используется для включения передачи при запуске двигателя с буксира.

Механизм переключения передач

Механизм переключения передач обычно монтируется в крышках коробок передач и предназначен для выбора, включения и выключения передач. Кроме того, в механизме переключения передач устанавливаются устройства, исключающие включение двух передач одновременно и предотвращающие самопроизвольное выключение передач.

Основные требования, предъявляемые к этому механизму – легкость и простота управления коробкой передач, бесшумность и плавность переключения передач, надежная фиксация включенной передачи, предотвращение одновременного включения двух или нескольких передач, а также предохранение от включения на ходу передачи, противоположной движению автомобиля.
Кроме того, механизм включения должен быть надежным, долговечным, не требовательным к сложным регулировкам и прост в техническом уходе. Сбои в работе механизма переключения передач могут привести к повреждению деталей и выходу из строя такого дорогостоящего агрегата, как коробка передач.

Механизм переключения коробки передач грузового автомобиля (рис. 1, а) состоит из трех штоков, трех вилок, трех фиксаторов с шариками, предохранителя включения первой передачи и заднего хода и замкового устройства.
Штоки 8, 9, 11 размещены в отверстиях внутренних приливов крышки картера 1. На них закреплены вилки 5, 7, 10, соединенные с каретками синхронизаторов и с подвижным зубчатым колесом включения первой передачи и заднего хода.

Фиксаторы 4 удерживают штоки в нейтральном или включенном положении, что исключает самопроизвольное выключение передач. Каждый фиксатор представляет собой шарик с пружиной, установленные над штоками в специальных гнездах крышки картера. На штоках для шариков фиксаторов выполнены специальные канавки (лунки).
Перемещение штока с вилкой, а следовательно, синхронизатора, возможно только при приложении усилия со стороны водителя, в результате которого шарик утопится в свое гнездо.

Замковое устройство предотвращает включение одновременно двух передач. Оно состоит из штифта 12 и двух пар шариков 6, расположенных между штоками в специальном горизонтальном канале крышки картера. При перемещении какого-либо штока два других запираются шариками, которые входят в соответствующие канавки на ползунах.

С целью предотвращения случайного включения передач заднего хода или первой передачи при движении автомобиля в стенке крышки коробки передач смонтирован предохранитель, состоящий из втулки, кольца с пружиной 3 и упора.
Чтобы включить первую передачу или передачу заднего хода, необходимо отжать пружину предохранителя до упора, для чего к рычагу управления водителем прикладывается некоторое усилие.

Механизм переключения передач легкового автомобиля (рис. 1, б) устроен следующим образом.
Шток 14 вилки выключения третьей и четвертой передач установлен в отверстиях передней и задней стенок картера, а штоки 13 и 16 в отверстия задней стенки и прилива картера.

На каждом штоке закреплены болтом вилки 15, 21, 23 включения передач. Для удержания штоков в нейтральном положении и в одном из крайних положений, когда включена передача, в них выполнены по три гнезда, к которым поджимается пружиной 19 шарик 20 фиксатора. Фиксаторы располагаются во втулках и закрываются крышкой 18. В головке каждого штока имеется паз, в который входит нижний конец рычага переключения передач.

Замковое устройство состоит из трех блокировочных сухарей 17. Два крайних сухаря установлены в отверстиях задней стенки картера, а средний сухарь в отверстии штока 14.
При перемещении штока 13 или 16 он выдавливает сухарь, который входит в гнездо среднего штока и одновременно через средний сухарь прижимает другой сухарь к гнезду противоположного штока. Таким образом, эти штоки будут зафиксированы в нейтральном положении.
При перемещении среднего штока 14 выдавливаются сразу два сухаря и фиксируют крайние штоки 13 и 16.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

error: Content is protected !!
Adblock
detector