Система вентиляции имеет три шланга. Первый шланг представляет собой шланг большого диаметра, по которому картерные газы поступают в маслоотделитель (см. схему). Второй и третий шланги (шланги первого и второго контуров) представляют собой два дополнительных шланга (один малого диаметра, другой большого), по которым картерные газы, прошедшие маслоотделитель, подаются в камеру сгорания через дроссельный патрубок.
Как известно, картерные газы, проходя через сепаратор и уходя в тонкую трубку (на холостом ходу) или в толстую ( в движении) оставляют на сетке, которая находится внутри сепаратора, частицы масла, нагара и прочей каки, которая высасывается из-под клапанной крышки за счет разрежения, создающегося в ресивере инжектора. Кроме того, часть копоти и частиц масла не задержанная сеткой сепаратора летит в ресивер инжектора, засирая дроссельную заслонку, сам ресивер и его каналы, регулятор холостого хода, форсунки. Для того, чтобы уменьшить кол-во каки в инжекторе и реже мыть дроссельный узел где-то пару месяцев назад я в разрыв шланга, который идет от сепаратора к ресиверу, воткнул обычный топливный фильтр тонкой очистки. Вот так это выглядит со стороны:
После первой замены фильтр, на котором я проехал около 1000км, стал выглядить так:
Вторая замена была произведена примерно через тысячи 1500-2000 после установки очередного фильтра, он же выглядил такоим образом.
Сам фильтр получается как дешевый расходник, но его замена раз в 1000-1500км обходится куда дешевле и приятнее чем промывка дросельного узла)
Всем спасибо за внимание, успехов 😉
Двигатель внутреннего сгорания работает по принципу сжигания топливно-воздушной смеси в цилиндрах. После сжигания топливного заряда отработавшие газы и другие продукты сгорания смеси воздуха и топлива в большей части выводятся через выпускную систему наружу, то есть выбрасываются в атмосферу.
Однако с учетом того, что в камере сгорания создается высокое давление, часть газов, остатки несгоревшего топлива и другие продукты прорываются через поршневые кольца и попадают в картер ДВС. Картер представляет из себя закрытую полость, в которой находится коленвал и другие детали силового агрегата.
Чтобы уменьшить количество газов и снизить давление, в конструкции современных ДВС используется система вентиляции картерных газов PCV (Positive Crankcase Ventilation). В этой статье мы поговорим об эволюции и устройстве данной системы, а также затронем вопрос распространенных неисправностей.
Читайте в этой статье
Устройство и конструктивные особенности системы вентиляции картера
Итак, система вентиляции картера позволяет удалить избыток картерных газов, повышает срок службы моторного масла, снижает выброс токсичных веществ в атмосферу, уменьшает давление в картере силового агрегата. Системы могут быть:
Сразу отметим, на разных типах ДВС конструкция данной системы может отличаться, при этом основные функциональные элементы на современных моторах представляют собой:
- воздушные патрубки, по которым циркулируют газы;
- клапан вентиляции картера, который регулирует давление картерных газов при их подаче во впускной коллектор;
- маслоотделитель для предотвращения попадания масляных паров в камеру сгорания для уменьшения сажеобразования;
Другими словами, сегодня активно используется закрытый тип. Общий принцип работы такой системы вентиляции картера основан на разрежении, которое создается во впускном коллекторе. Благодаря разрежению газы выводятся из картера. Далее указанные газы проходят через маслоотделитель, который отделяет газы от масла. После очистки газы идут по воздушным патрубкам, после чего попадают во впуск. Из впускного коллектора картерные газы, перемешанные с воздухом, подаются в камеру сгорания и дожигаются.
Добавим, что в устаревшей открытой системе (эжекционного типа) избыток картерных газов попросту выбрасывается в атмосферу. Способ очень простой и дешевый, однако отмечается усиленное загрязнение окружающей среды. Также эффективность работы такого решения не самая высокая, так как при низких оборотах и в режиме ХХ подобная вентиляция не работает.
Еще такая система не выполняет своих функций на высоких оборотах. Параллельно существует риск того, что в картер будет засасываться недостаточно очищенный наружный воздух после остывания ДВС. Дополнительно следует выделить, что при наличии открытой системы на моторе возможно увеличение расхода масла, также смазка может выбрасываться вместе с газами наружу, в результате поверхности двигателя загрязняются масляными пятнами.
Двигатель с такой системой работает стабильно, лучше держит обороты зимой, так как холодный наружный воздух во впуске подогревается картерными газами, снижается риск детонации. Однако при всех плюсах и эта схема устройства не лишена ряда недостатков.
В результате попадания картерных газов во впуск происходит усиленное загрязнение воздуховодов и элементов во впускной системе двигателя. Также специалисты отмечают, что принудительная система отсоса отработанных газов может являться причиной быстрого окисления моторного масла из-за сильного разрежения на высоких оборотах.
Также принудительная вентиляция может дополнительно реализовываться разными путями. При этом основным принципом остается то, что газы должны «вытягиваться» из картера, а также происходит их смешивание в результате подачи в картер наружного воздуха. После этого через специальный клапан смесь подается в цилиндры мотора.
На карбюраторных моторах, агрегатах с моновпрыском и инжекторных двигателях можно встретить различные типы реализации подвода картерных газов. Ранее достаточно часто встречалась конструкция, когда система имела два канала. Один был выведен перед дроссельной заслонкой, а второй канал с жиклером выводился за дросселем.
В режиме холостого хода газы подавались по каналу с жиклером за заслонкой. Однако после начала открытия заслонки и роста оборотов коленвала разряжение в области за заслонкой становилось меньше. При этом объем газов, которые прорывались в картер, становился больше. Канал с жиклером переставал выполнять свою функцию, но подключался вывод газов по каналу перед дросселем. Дальнейшее развитие системы вентиляции привело к появлению клапанных решений для регулирования подачи газов.
Если просто, клапан стоит в трубопроводе, через который подводятся газы из картера. Клапаны также делятся на золотниковые и мембранные. Добавим, что мембранные клапаны лучше дозируют количество газов, однако сама мембрана чаще выходит из строя.
Для чего нужен маслоотделитель в двигателе
Как уже было сказано выше, маслоотделитель (маслоуловитель) является элементом системы вентиляции картера. Главной задачей маслоотделителя становится не допустить попадания частичек масла в камеру сгорания.
По способу отделения масла от картерных газов можно выделить лабиринтный и циклический маслоуловитель. Отметим, что на современных моторах используется маслоотделитель комбинированного типа.
Центробежный маслоотделитель более тщательно отделяет смазку от газов. При прохождении через устройство газы фактически «раскручиваются», то есть на них воздействует центробежная сила. Под ее воздействием масло оседает на стенках и стекает в картер ДВС.
Чтобы избежать турбулентности газов, в комбинированном типе устройств за центробежным маслоотделителем на выходе устанавливается лабиринтный успокоитель. В успокоителе завершается процесс отделения частиц смазки от газов из картера.
Клапан системы вентиляции картера
Указанный клапан служит для того, чтобы отрегулировать давление газов, которые подаются во впуск. Если разрежение не сильно большое, тогда клапан находится в открытом положении.
В случае, когда разрежение во впускном канале значительное, происходит закрытие данного клапана. Еще отметим, что в турбомотрах вентиляция картера реализована посредством дроссельного регулирования.
Частые неисправности системы вентиляции картера
С учетом приведенной выше информации становится понятно, что система вентиляции картера на современных двигателях является достаточно сложной. Выход из строя и нарушения в работе данной системы могут привести к ухудшению общей работоспособности ДВС, возникновению неполадок и уменьшению ресурса агрегата.
Сразу отметим, что проблемы с вентиляцией картера могут быть не так очевидны, однако проявляются в виде снижения мощности, увеличения расхода топлива, активного и быстрого загрязнения дроссельной заслонки и РХХ. Также в воздушном фильтре может появиться масло и т.д.
Что касается причин, клапан клинит как из-за засорения, так и в результате собственных повреждений. Как правило, первый вариант более распространен. Дело в том, что в картерных газах присутствует сажа, нагар и т.п.
Чем изношеннее мотор, (ЦПГ, другие узлы и системы), тем больше таких продуктов попадает в картер. Также различные загрязнения могут переноситься с микрочастицами масла. В результате грязь и отложения скапливаются в клапане, различных отверстиях, патрубках, каналах. Также рвутся и трескаются сами патрубки.
Как утверждают опытные автомеханики, c появлением стандарта Euro-4 стали встречаться двигатели, которые «падают» в аварийный режим работы при возникновении проблем с вентиляцией картера. При этом проведение компьютерной диагностики ничего не показывает, что усложняет поиск проблемы.
Также указанная система может доставить много неприятностей в зимний период. Дело в том, что в картерных газах содержатся частицы воды. Вода появляется из атмосферного воздуха, который засасывается мотором во время работы. После попадания в систему вентиляции, вода, которая находится в виде пара, может конденсироваться и скапливаться в отдельных местах системы вентиляции. После остывания ДВС влага попросту замерзает и становится льдом, закупоривая систему.
В результате вентиляция перестает работать, давление в картере растет и выдавливает масляный щуп, а двигатель и подкапотное пространство забрызгивает моторным маслом. Причем данная неисправность может возникнуть как на старом двигателе, так и на новом ДВС с небольшим пробегом. Дело в том, что далеко не на всех автомобилях система вентиляции имеет дополнительный обогрев.
Подведем итоги
Отметим, что в мануалах не всегда содержится какое-либо указание или предписание для отдельного обслуживания системы вентиляции картера двигателя. Однако на практике обслуживание должно проводиться, причем регулярно.
Такой подход позволит избежать критического засорения, в результате которого картерные газы попросту выдавят щуп и погонят масло из двигателя. Также чистота системы будет способствовать нормальному процессу смесеобразования, что отразится на приемистости агрегата, расходе горючего и смазки.
Напоследок отметим, что система вентиляции давно уже перестала являться решением только для снижения давления в картере. Сегодня данная схема является одним из эффективных инструментов для повышения общей экологичности двигателя наравне с системой EGR и установкой катализатора в выпуске. По этой причине современные производители автомобилей продолжают активно использовать и совершенствовать данное решение.
Назначение и устройство системы рециркуляции отработавших газов. Клапан EGR, система ЕГР высокого и низкого давления. Неисправности системы рециркуляции.
Почему рекомендуется отключить систему EGR на дизельном двигателе и как правильно отключать ЕГР. Механическое глушение клапана егр и программное отключение.
Принцип действия системы изменения фаз газораспределения VVT. Гидроуправляемая муфта, ступенчатое регулирование VVTL-i, VTEC. Электромагнитный привод ГРМ.
Для чего используется мочевина в системе очистки выхлопа дизельного двигателя. Применение реагента AdBlue в системе жидкостной очистки отработавших газов.
Почему забивается сажевый фильтр. Эксплуатация, профилактика. Основные способы очистки фильтра со снятием и без, жидкости для промывки. Как лучше прочищать.
Старая истина, гласящая «не подмажешь – не поедешь», в полной мере распространяется и на дизеля. От состояния систем смазки и вентиляции картера, а также правильного выбора моторного масла зависят не только надежность и долговечность двигателя, но и пусковые качества, его топливная экономичность, а также токсичность выхлопа.
Система смазки
![]() |
Главная задача системы смазки – создать для уменьшения износа и облегчения движения между трущимися поверхностями масляный слой. Образующее его масло кроме своей главной задачи удаляет из трущейся пары посторонние частицы и продукты износа, предотвращает коррозию деталей, охлаждает трущиеся поверхности, а в некоторых двигателях используется в качестве теплоносителя и охлаждает днище поршня.
В большинстве двигателей грузовых автомобилей масло в основные узлы кривошипно-шатунного и газораспределительного механизмов подается под давлением. Часть поверхностей трения смазывается разбрызгиванием. Основная часть масла проходит через подшипники коленчатого вала (до 80% в новых двигателях и до 96% – в изношенных). Чаще всего используется параллельный подвод масла к подшипникам коленчатого вала.
Схемы масляных насосов:
а – с внешним эвольвентным зацеплением; б – с внутренним эпициклоидальным зацеплением; в – с внутренним эвольвентным зацеплением
Как правило, двигатели грузовых автомобилей имеют двухсекционные шестеренные масляные насосы. Основная секция подает масло к подшипникам, а дополнительная – используется для прокачки масла через теплообменник, центрифугу и для охлаждения поршней. Шестерни насосов могут иметь как внешнее, так и внутреннее – эпициклоидальное или эвольвентное – зацепление. Насосы с внутренним зацеплением более сложны в производстве, их привод требует повышенных затрат мощности, однако имеют меньшие габариты и более низкий уровень шума, а износ их шестерен меньше сказывается на производительности.
Производительность насоса выбирается из условия обеспечения заданного давления в системе смазки даже при перегреве, а также получения необходимого теплоотвода. У новых двигателей масляный насос должен иметь двух- или даже трехкратный запас по производительности, чтобы обеспечить надежную работу системы смазки при износе деталей насоса, вкладышей коренных и шатунных подшипников, а также шеек коленчатого и распределительного валов.
Охлаждение поршней особенно важно в двигателях с высокой степенью наддува и при расположении камеры сгорания в днище поршня. Реализуется оно чаще всего с помощью нескольких типовых схем. Наиболее простая, но зато и наименее эффективная – подача масла из неподвижных распылителей, установленных в нижней части цилиндра. Другой способ – подача масла по сверлению в шатуне в его верхнюю головку и через установленный в ней распылитель – на днище поршня. Но наиболее эффективна подача масла через отверстие в шатуне и поршневой палец в полость охлаждения, выполненную в днище поршня. Для ее получения днище делают съемным, или же заливают в него трубку или специальную вставку. Такое охлаждение поршня требует и более интенсивного охлаждения масла.
Основная неисправность системы смазки – снижение давления. Оно может возникнуть из-за износа подшипников – чаще всего коренных на коленчатом валу, залегания клапанов системы в открытом состоянии, износа шестерен насоса. Каждая из перечисленных причин предполагает серьезный ремонт, но зачастую дело обходится и без него.
Причиной уменьшения давления в системе смазки может быть снижение вязкости масла из-за перегрева или попадания конденсата топлива. Эта опасность увеличивается при коротких поездках зимой на не полностью прогретом двигателе. Так, при специальных испытаниях на коррозионный износ, проводившихся на автомобиле с бензиновым двигателем, за одну неделю уровень масла в картере двигателя увеличивался на 1. 1,5 литра. Чтобы «выпарить» бензин и восстановить исходную вязкость масла, приходилось проезжать несколько сот километров с максимальными скоростями. Для дизелей подобная опасность намного меньше, зато и «выпарить» дизельное топливо из масла практически невозможно.
Уход за системой смазки предельно прост: достаточно своевременно менять масло и фильтры, а также регулярно промывать двигатель. И единственная сложность состоит в периодичности смены масла. А она определяется не только особенностями двигателя, но и маркой используемого масла. Их в последние годы появилось очень много – отечественных и импортных. Вместе с ними возникла масса вопросов о возможности и целесообразности их применения в наших условиях.
Качество масла, а следовательно, и его стоимость, определяются количеством присадок, его основой, степенью очистки. Наибольшее распространение сегодня имеют минеральные масла, основу которых составляет продукт прямой перегонки нефти. Для получения нужных свойств в основу вводится комплекс присадок. Он тщательно выверяется и балансируется изготовителями масел, а потому к различным присадкам и добавкам, кои следует лить в двигатель самому потребителю, надлежит относиться весьма осторожно.
![]() |
Особое место среди присадок занимают металлоплакирующие (МП). В результате трения возникает разность потенциалов и ионы способствуют наращиванию слоя присадки на изношенных поверхностях, уменьшая зазор между трущимися парами. Это увеличивает ресурс двигателя, снижает угар масла, улучшает его экономические, мощностные и экологические показатели. Необходимо иметь в виду, что заметный эффект от добавки МП начинает проявляться лишь через десятки тысяч километров. Учитывая это, применение такого рода присадок для двигателей с повышенным расходом масла нецелесообразно, так как они выносятся из двигателя вместе с маслом, не успевая создать защитный слой.
Поршни дизелей с охлаждением днища маслом:
а – со съемным днищем; б – с трубкой, заливаемой в днище; в – со вставкой, заливаемой в поршень
Последнее время все большее распространение получают синтетические масла, основа которых создана искусственно. Они обладают хорошими вязкостными характеристиками, снижают износ двигателя, способны долго работать без смены. Однако высокая стоимость этих масел ограничивает их применение.
Целесообразность использования определяется в каждом конкретном случае в зависимости от степени износа двигателя и соответственно угара масла, а также установленной периодичности технического обслуживания. При повышенном расходе масла приходится постоянно доливать его, поэтому применение более дорогого масла приведет к неоправданным затратам. Использование масел, обеспечивающих увеличенный пробег до его смены, также не всегда целесообразно. Периодичность замены масла согласована с периодичностью обслуживания автомобиля в целом. Поэтому менять масло нужно либо во время очередного ТО, либо проводить дополнительное обслуживание, что для большинства фирм неприемлемо.
Свойства отечественных моторных масел характеризуются прежде всего величиной вязкости при 100°С и 0°С (для некоторых масел – при минус 18°С) и индексом вязкости – интенсивностью изменения вязкости при изменении температуры.
По эксплуатационным свойствам отечественные (согласно действующему стандарту) масла делятся на несколько групп: В1 – среднефорсированные бензиновые двигатели, В2 – среднефорсированные дизели, В – универсальное масло для среднефорсированных двигателей, Г1 – высокофорсированные бензиновые двигатели, Г2 – высокофорсированные дизели без наддува, Г – универсальное масло высокофорсированных двигателей, Д – высокофорсированные дизели с наддувом.
Масла зарубежного производства и некоторые новейшие отечественные классифицируются по системам SAE J-300 и АСЕА (Ассоциация европейских производителей автомобилей). У летних масел SAE 20, 30, 40, 50, 60 кинематическая вязкость при 1000С изменяется соответственно от 5,6 до 21,9 м 2 /с. В обозначении зимних масел добавляется буква W: SAE 0W, 5W, 10W, 15W, 20W, 25W. Их кинематическая вязкость при 100°С находится соответственно в пределах от 3,8 до 9,3 мм 2 /с.
Температурная зона применяемости каждой из этих марок определяется минимальной температурой проворачиваемости двигателя стартером ( от –30°С для 0W до –5°С для 25W).
Широкое распространение получили всесезонные масла, имеющие более пологую вязкостную характеристику в зависимости от температуры масла. Низкая вязкость при отрицательной температуре обеспечивает зимний пуск двигателя. При высокой температуре необходимая вязкость поддерживается загущающими присадками. Для этих масел к обозначениям аналогичным для зимних масел добавляются цифры справа (от 20 до 50), характеризующие «горячую вязкость».
Применимость импортных масел для тех или иных двигателей обозначается по классификации API (Американский институт нефти) или АСЕА, а зачастую и по обеим. По API для дизельных двигателей применяют масла категории С, для бензиновых -– категории S. Вторая буква характеризует уровень эксплуатационных свойств и их назначение: Е – дизели грузовых автомобилей с невысокой литровой мощностью, F – дизели легковых автомобилей и грузовых автомобилей выпуска до 1994 года и бензиновые двигатели, G – современные дизели с высокой литровой мощностью и бензиновые двигатели выпуска до 1993 года, Н – бензиновые двигатели выпуска до 1996 года и J – современные бензиновые двигатели. Масла с цифрой 2 предназначены для двухтактных двигателей. Универсальные масла (для дизелей и бензиновых двигателей) имеют двойное обозначение (например, API SG/CD).
При классификации по АСЕА первая буква обозначает тип двигателя: А – бензиновые, В – дизели легковых автомобилей и Е – дизели грузовиков. Следующая далее цифра характеризует моющие, противозадирные способности и вязкостные свойства. Наиболее высокие качества имеют масла категории 3. Например, категория Е3-96, кроме противоизносных свойств и предотвращения образования нагара на поршне обеспечивает сохранение вязкостных характеристик при высокой температуре и способность диспергировать сажу.
Этими основными сведениями о маслах мы и ограничимся, поскольку при существующем обилии марок выбор масла – скорее искусство, чем наука. И единственный бесспорный совет – опирайтесь на здравый смысл.
Вентиляция картера
![]() |
По существующим требованиям к токсичности современные двигатели оборудуют системой принудительной вентиляции картера, направляющей картерные газы во впускную систему. Наиболее эффективной, но более сложной является схема, при которой воздух в картер проходит через отдельный воздушный фильтр. На бензиновых двигателях при малых нагрузках часть картерных газов, разбавленных воздухом, поступает в воздушный фильтр за фильтрующим элементом, а другая часть через регулирующий золотник или жиклер подается в задроссельное пространство.
Схема вентиляции картера дизеля:
1 – крышка фильтра системы вентиляции картера; 2 – мембрана; 3 – пружина; 4 – крышка клапана; 5 – шланг отвода картерных газов; 6 – трубка слива масла; 7 – блок-картер; 8 – крышка головки цилиндров; 9 – штуцер; 10 – впускной трубопровод
Большинство современных дизелей выпускается фактически только с системой всасывания картерных газов во впускной трубопровод. Количество картерных газов, поступающих в камеру сгорания, зависит главным образом от состояния цилиндропоршневой группы. Однако при увеличении сопротивления воздушного фильтра выше нормы и при износе сальников добавляется воздух с пылью, поступающий через них в картер. Это приводит к увеличению абразивного износа. Поэтому особенно важно следить за показаниями индикатора засоренности воздушного фильтра, которым, как правило, оборудуются двигатели большого литража, и своевременно заменять воздушный фильтр. Кроме того, необходимо систематически проводить обслуживание системы вентиляции картера (промывку каналов, дозирующих элементов, клапана).
Необходимо иметь в виду, что при износе цилиндропоршневой группы и уплотнений стеблей впускных клапанов увеличивается попадание паров масла в камеру сгорания. Это существенно повышает выброс канцерогенных веществ с отработавшими газами. Поэтому двигатели, оборудованные системой принудительной вентиляции картера, при повышенном угаре масла необходимо своевременно отправлять в ремонт.