Меню Закрыть

Устройство регулятора напряжения генератора

Home Автоэлектроника Регуляторы напряжения автомобильных генераторов


Рис. 1. Способы управления током возбуждения: Г — генератор с параллельным возбуждением; Wв — обмотка возбуждения; Rд — дополнительное сопротивление; R — балластное сопротивление; К — коммутатор тока (регулирующий орган) в цепи возбуждения; а, б, в,г, д указаны в тексте.

Современный автомобильный двигатель внутреннего сгорания (ДВС) работает в широком интервале изменения оборотов (900. 6500 об/мин). Соответственно изменяется и частота вращения ротора автомобильного генератора, а значит и его выходное напряжение.

Зависимость выходного напряжения генератора от оборотов двигателя внутреннего сгорания недопустима, так как напряжение в бортовой сети автомобиля должно быть постоянным и не только при изменении оборотов двигателя, но и при изменении тока нагрузки. Функцию автоматического регулирования напряжения в автомобильном генераторе выполняет специальное устройство — регулятор напряжения автомобильных генераторов. Данный материал посвящен рассмотрению регуляторов напряжения современных автомобильных генераторов переменного тока.

Регулирование напряжения в генераторах с электромагнитным возбуждением

Способы регулирования. Если главное магнитное поле генератора наводится электромагнитным возбуждением, то электродвижущая сила Eг генератора может быть функцией двух переменных: частоты n вращения ротора и тока Iв в обмотке возбуждения — Eг = f(n, Iв).

Именно такой тип возбуждения имеет место во всех современных автомобильных генераторах переменного тока, которые работают с параллельной обмоткой возбуждения.

При работе генератора без нагрузки его напряжение Uг равно его электродвижущей силе ЭДС Eг:
Uг = Eг = СФn (1).

Напряжете Uг генератора под током Iн нагрузки меньше ЭДС Eг на величину падения напряжения на внутреннем сопротивлении rг генератора, т.е. можно записать, что
Eг = Uг + Iнrг = Uг(1 + β) (2).

Величина β = Iнrг/Uг называется коэффициентом нагрузки.

Из сравнения формул 1 и 2 следует, что напряжение генератора
Uг = nСФ/(1 + β), (3)
где С — постоянный конструктивный коэффициент.

Уравнение (3) показывает, что как при разных частотах (n) вращения ротора генератора (n = Var), так и при изменяющейся нагрузке (β = Var), неизменность напряжения Uг генератора может быть получена только соответствующим изменением магнитного потока Ф.

Магнитный поток Ф в генераторе с электромагнитным возбуждением формируется магнитодвижущей силой Fв = W Iв обмотки Wв возбуждения (W — число витков обмотки Wв) и может легко управляться с помощью тока Iв в обмотке возбуждения, т.е. Ф = f (Iв). Тогда Uг = f[n, β, f(Iв)] 1 что позволяет удерживать напряжение Uг генератора в заданных пределах регулирования при любых изменениях его оборотов и нагрузки соответствующим выбором функции f(Iв) регулирования.

Автоматическая функция f(Iв) регулирования в регуляторах напряжения сводится к уменьшению максимального значения тока Iв в обмотке возбуждения, которое имеет место при Iв = Uг/Rw (Rw — активное сопротивление обмотки возбуждения) и может уменьшаться несколькими способами (рис. 1): подключением к обмотке Wв параллельно (а) или последовательно (б) дополнительного сопротивления Rд: закорачиванием обмотки возбуждения (в); разрывом токовой цепи возбуждения (г). Ток через обмотку возбуждения можно и увеличивать, закорачивая последовательное дополнительное сопротивление (б).

Все эти способы изменяют ток возбуждения скачкообразно, т.е. имеет место прерывистое (дискретное) регулирование тока. В принципе возможно и аналоговое регулирование, при котором величина последовательного дополнительного сопротивления в цепи возбуждения изменяется плавно (д).

Но во всех случаях напряжение Uг генератора удерживается в заданных пределах регулирования соответствующей автоматической корректировкой величины тока возбуждения.

Дискретно — импульсное регулирование

В современных автомобильных генераторах магнитодвижущую силу Fв обмотки возбуждения, а значит и магнитный поток Ф, изменяют периодическим прерыванием или скачкообразным уменьшением тока Iв возбуждения с управляемой частотой прерывания, т.е. применяют дискретно-импульсное регулирование рабочего напряжения Uг генератора (ранее применялось аналоговое регулирование, например, в угольных регуляторах напряжения).

Суть дискретно-импульсного регулирования станет понятной из рассмотрения принципа действия генераторной установки, состоящей из простейшего контактно-вибрационного регулятора напряжения, и генератора переменного тока (ГПТ).


Рис. 2. Функциональная (а) и электрическая (б) схемы генераторной установки с вибрационным регулятором напряжения.

Функциональная схема генераторной установки, работающей совместно с бортовой аккумуляторной батареей (АКБ), показана на рис. 2а, а электрическая схема — на рис. 26.

В состав генератора входят: фазные обмотки Wф на статоре СТ, вращающийся ротор R, силовой выпрямитель ВП на полупроводниковых диодах VD, обмотка возбуждения Wв (с активным сопротивлением Rw). Механическую энергию вращения Aм = f(n) ротор генератора получает от ДВС. Вибрационный регулятор напряжения РН выполнен на электромагнитном реле и включает в себя коммутирующий элемент КЭ и измерительный элемент ИЭ.

Коммутирующий элемент КЭ — это вибрационный электрический контакт К, замыкающий или размыкающий дополнительное сопротивление Rд, которое включено с обмоткой возбуждения Wв генератора последовательно. При срабатывании коммутирующего элемента (размыкание контакта К) на его выходе формируется сигнал τRд (рис. 2а).

Измерительный элемент (ИЭ, на рис. 2а) — это та часть электромагнитного реле, которая реализует три функции:

  1. функцию сравнения (СУ) механической упругой силы Fn возвратной пружины П с магнитодвижущей силой Fs = WsIs релейной обмотки S (Ws — число витков обмотки S, Is — ток в релейной обмотке), при этом результатом сравнения является сформированный в зазоре с период Т (Т = tр + tз) колебаний якоря N;
  2. функцию чувствительного элемента (ЧЭ) в цепи обратной связи (ЦОС) регулятора напряжения, чувствительным элементом в вибрационных регуляторах является обмотка S электромагнитного реле, подключенная непосредственно к напряжению Uг генератора и к аккумуляторной батарее (к последней через ключ зажигания ВЗ);
  3. функцию задающего устройства (ЗУ), которое реализуется с помощью возвратной пружины П с силой упругости Fп и опорной силой Fо.

Работа регулятора напряжения с электромагнитным реле наглядно может быть пояснена с помощью скоростных характеристик генератора (рис. 3 и 4).


Рис. 3. Изменение Uг, Iв, Rб во времени t: а — зависимость текущего значения выходного напряжения генератора от времени t — Uг = f (t); б — зависимость текущего значения в обмотке возбуждения от времени — Iв = f (t); в — зависимость среднеарифметического значения сопротивления в цепи возбуждения от времени t — Rб = f(t); I — время, отвечающее частоте (n) вращения ротора генератора.

Читайте также:  Лада веста спорт начало продаж

Пока напряжение Uг генератора ниже напряжения Uб аккумуляторной батареи (Uг Uб) магнитодвижущая сила Fs релейной обмотки становится больше силы Fп возвратной пружины П, т.е. Fs= Is Ws > Fп. Электромагнитное реле срабатывает и контакт К размыкается, при этом в цепь обмотки возбуждения включается дополнительное сопротивление.

Еще до размыкания контакта К ток Iв в обмотке возбуждения достигает своего максимального значения Iв max = UгRw > Iвб, от которого, сразу после размыкания контакта К, начинает падать, стремясь к своему минимальному значению Iв min = Uг/(Rw + Rд). Вслед за падением тока возбуждения напряжение генератора начинает соответственно уменьшаться (Uг = f(Iв), что приводит к падению тока Is = Uг/Rs в релейной обмотке S и контакт К вновь размыкается усилием возвратной пружиной П (Fп > Fs). К моменту размыкания контакта К напряжение генератора Uг становится равным своему минимальному значению Umin, но остается несколько больше напряжения аккумуляторной батареи (Uгmin > Uб).

Начиная с момента размыкания контакта К (n = nmin, рис. 3), даже при неизменной частоте n вращения ротора генератора, якорь N электромагнитного реле входит в режим механических автоколебаний и контакт К, вибрируя, начинает периодически, с определенной частотой коммутации fк = I/Т = I/(tр + tз) то замыкать, то размыкать дополнительное сопротивление Rд в цепи возбуждения генератора (зеленая линия на участке n = nср = const, рис. 3). При этом сопротивление Rв в токовой цепи возбуждения изменяется скачкообразно от значения Rw до величины Rw+Rд.

Так как при работе регулятора напряжения контакт К вибрирует с достаточно высокой частотой fк коммутации, то Rв = Rw + τр где величина τр — это относительное время разомкнутого состояния контакта К, которое определяется по формуле τр = tр/(tз + tр), I/(tз + tр) = fк — частота коммутации. Теперь среднее, установившееся для данной частоты fк коммутации, значение тока возбуждения может быть найдено из выражения:

Iв ср = Uг ср/Rв = Uг ср/(RwрRд) = Uг ср/(Rw + Rдtр/fк),
где Rв — среднеарифметическое (эффективное) значение пульсирующего сопротивления в цепи возбуждения, которое при увеличении относительного времени τр разомкнутого состояния контакта К также увеличивается (зеленая линия на рис. 4).


Рис. 4. Скоростные характеристики генератора.

Процессы при коммутациях с током возбуждения

Рассмотрим более подробно, что происходит при коммутациях с током возбуждения. Когда контакт К длительно замкнут, по обмотке Wв возбуждения протекает максимальный ток возбуждения Iв = Uг/Rw.

Однако обмотка возбуждения Wв генератора представляет собой электропроводную катушку с большой индуктивностью и с массивным ферромагнитным сердечником. Как следствие, ток через обмотку возбуждения после замыкания контакта К нарастает с замедлением. Это происходит потому, что скорости нарастания тока препятствует гистерезис в сердечнике и противодействующая нарастающему току — ЭДС самоиндукции катушки.

При размыкании контакта К ток возбуждения стремится к минимальной величине, значение которой при длительно разомкнутом контакте определяется как Iв = Uг/(Rw + Rд). Теперь ЭДС самоиндукции совпадает по направлению с убывающим током и несколько продлевает процесс его убывания.

Из сказанного следует, что ток в обмотке возбуждения не может изменяться мгновенно (скачкообразно, как дополнительное сопротивление Rд) ни при замыкании, ни при размыкании цепи возбуждения. Более того, при высокой частоте вибрации контакта К ток возбуждения может не достигать своей максимальной или минимальной величины, приближаясь к своему среднему значению (рис. 4), так как величина tр = τр/fк увеличивается с увеличением частоты fк коммутации, а абсолютное время tз замкнутого состояния контакта К уменьшается.

Из совместного рассмотрения диаграмм, показанных на рис. 3 и рис. 4, вытекает, что среднее значение тока возбуждения (красная линия б на рис. 3 и рис. 4) при повышении оборотов n уменьшается, так как при этом увеличивается среднеарифметическая величина (зеленая линия на рис. 3 и рис. 4) суммарного, пульсирующего во времени, сопротивления Rв цепи возбуждения (закон Ома). При этом среднее значение напряжения генератора (Uср на рис. 3 и рис. 4) остается неизменным, а выходное напряжение Uг генератора пульсирует в интервале от Umax до Umin.

Если же увеличивается нагрузка генератора, то регулируемое напряжение Uг первоначально падает, при этом регулятор напряжения увеличивает ток в обмотке возбуждения настолько, что напряжение генератора обратно повышается до первоначального значения.

Таким образом, при изменении тока нагрузки генератора (β = Var) процессы регулирования в регуляторе напряжения протекают так же, как и при изменении частоты вращения ротора.

Пульсации регулируемого напряжения. При постоянной частоте n вращения ротора генератора и при постоянной его нагрузке рабочие пульсации тока возбуждения (ΔIв на рис. 46) наводят соответствующие (по времени) пульсации регулируемого напряжения генератора.

Амплитуда пульсаций ΔUг — 0,5(Umax — Umin)* регулятора напряжения Uг от амплитуды тоновых пульсаций ΔIв в обмотке возбуждения не зависит, так как определяется заданным с помощью измерительного элемента регулятора интервалом регулирования. Поэтому пульсации напряжения Uг на всех частотах вращения ротора генератора практически одинаковы. Однако скорость нарастания и спада напряжения Uг в интервале регулирования определяется скоростью нарастания и спада тока возбуждения и, в конечном счете, частотой вращения (n) ротора генератора.

* Следует заметить, что пульсации 2ΔUг являются неизбежным и вредным побочным проявлением работы регулятора напряжения. В современных генераторах они замыкаются на массу шунтирующим конденсатором Сш, который устанавливается между плюсовой клеммой генератора и корпусом (обычно Сш = 2,2 мкФ)

Когда нагрузка генератора и частота вращения его ротора не изменяются, частота вибрации контакта К также неизменна (fк = I/(tз + tр) = const). При этом напряжение Uг генератора пульсирует с амплитудой ΔUр = 0,5(Umax — Umin) около своего среднего значения Uср.

При изменении частоты вращения ротора, например, в сторону увеличения или при уменьшении нагрузки генератора, время tз замкнутого состояния становится меньше времени tр разомкнутого состояния (tз 14,5 В; транзистор V2 управляет выходным каскадом; V3 — запирающий диод на входе выходного каскада; V4, V5 — мощные транзисторы выходного каскада (составной транзистор), включенные последовательно с обмоткой возбуждения (коммутирующий элемент КЭ для тока Iв); V6 шунтирующий диод для ограничения ЭДС самоиндукции обмотки возбуждения; R4, C1, R3 цепочка обратной связи, ускоряющая процесс отсечки тока Iв возбуждения.

Читайте также:  Как поставить мочевой катетер собаке

Еще более совершенным регулятором напряжения является электронный регулятор в интегральном исполнении. Это такое исполнение, при котором все его компоненты, кроме мощного выходного каскада (обычно это составной транзистор), реализованы с помощью тонкопленочной микроэлектронной технологии. Эти регуляторы настолько миниатюрны, что практически не занимают никакого объема и могут устанавливаться непосредственно на корпусе генератора в щеткодержателе.

Примером конструктивного исполнения ИРН может служить регулятор фирмы BOSCH-EL14V4C, который устанавливается на генераторах переменного тока мощностью до 1 кВт (рис. 6).

В заключение следует отметить, что интегральные регуляторы напряжения, в принципе, ремонту не подлежат. Кроме некоторых отдельных случаев, которые подробно рассматривали здесь
Автомобильные генераторы фирмы BOSCH
и здесь
Автомобильный генератор Bosch K114v23/55a — конструкция и принципиальная схема.

Рассмотрим устройство и принцип действия реле-регулятора ⭐ контактно-вибрационного типа, регулирующего работу генератора постоянного тока и состоящего из РОТ, РН и ОТ.

Реле обратного тока включает в себя последовательную 1 и параллельную 4 обмотки. Если напряжение генератора 13 ниже напряжения аккумуляторной батареи 16, то магнитный поток, создаваемый параллельной обмоткой, мал. Поэтому якорь 5 не может притянуться к сердечнику и замкнуть контакты 6 РОТ. По мере увеличения частоты вращения коленчатого вала двигателя повышается напряжение, вырабатываемое генератором. Когда напряжение превысит напряжение включения РОТ (достигнет 12,5 В в 12-вольтной системе или 25 В в 24-вольтной системе электрооборудования), якорь притянется к сердечнику, и контакты 6 замкнутся. Ток пойдет по обмоткам 1 и 4 в таком направлении, что их магнитные поля совпадут. В результате магнитное поле последовательной обмотки 1 усилит эффект прижатия контактов 6. Генератор будет обеспечивать питание потребителей, а излишек его мощности будет использован для подзарядки аккумуляторной батареи.

С уменьшением частоты вращения вала двигателя или при его остановке напряжение генератора становится меньше напряжения на клеммах батареи. Электрический ток при этом стремится течь от нее к якорю 15 генератора, что может привести к перегрузке последнего. Магнитный поток последовательной обмотки 1 сразу изменит направление и размагнитит сердечник 2, контакты 6 разомкнутся и генератор отключится от батареи. Пружина 3 способствует быстрому размыканию контактов РОТ.

Регулятор напряжения представляет собой прибор, аналогичный РОТ. Контакты РН 10 в отличие от контактов РОТ под воздействием пружины стремятся быть замкнутыми. Они остаются в этом положении, если напряжение Ur генератора 13 ниже напряжения Uрh, на которое отрегулирован РН. Ток возбуждения генератора проходит по цепи вывод Я генератора — обмотки 7 и 8 ОТ — замкнутые контакты 10 — вывод Ш обмотки возбуждения 14 генератора — «масса» (корпус) генератора.

Рис. Схема реле-регулятора:
1 — последовательная обмотка РОТ; 2 — сердечник РОТ; 3 пружина; 4 — параллельная обмотка РОТ; 5 — якорь; 6 — контакт РОТ; 7 — последовательная обмотка ОТ; 8 — ускоряющая обмотка ОТ; 9 — контакт ОТ; 10 — контакт РН; 11 — выравнивающая обмотка РН; 12 — параллельная обмотка РН; 13 — генератор; 14 — обмотка возбуждения генератора; 15 — якорь генератора; 16 — аккумуляторная батарея; 17 — стартер; 18 — выключатели зажигания; 19 — контрольная лампа; 20—22 — резисторы; А, Б, Ш, Я — маркировка выводов реле-регулятора

В момент, когда Ur > Uph, контакты 10 разомкнутся и ток возбуждения, минуя контакты 9 ОТ, пойдет через резисторы 20 и 21. Это произойдет при напряжении 14,5… 15 В в 12-вольтной системе и 29… 30 В в 24-вольтной. В результате сила тока в обмотках возбуждения уменьшится, а напряженность магнитного силового поля генератора снизится. Значение ЭДС в обмотке якоря и напряжение на выходных клеммах генератора также понизятся.

При снижении напряжения генератора уменьшится сила притяжения якоря параллельной обмоткой 12 РН, контакты 10 вновь замкнутся, и сила тока возбуждения увеличится.

Рассмотренный процесс повторяется периодически при частоте размыкания и замыкания контактов 10 в пределах 30… 200 с-1. Однако колебание напряжения на выводах генератора при этом не превышает 0,2 В. Напряжение, поддерживаемое РН, остается примерно постоянным и не сказывается на изменении силы света ламп освещения.

Ограничитель тока работает аналогично РН, но его последовательная обмотка 7 реагирует не на напряжение, а на силу отдаваемого генератором 13 тока. До тех пор пока мощность включенных потребителей не превышает номинальной мощности генератора, сердечник ОТ намагничен слабо и пружина подвижных контактов 9 удерживает их в замкнутом положении. Если мощность включенных потребителей превысит номинальную мощность генератора, то сердечник ОТ намагнитится настолько, что разомкнет контакты 9. В этом случае ток возбуждения пойдет двумя путями:

  1. через резистор 22, замкнутые контакты 10 Ph и далее к выводу Ш генератора 13
  2. через ускоряющую обмотку 8 ОТ, резисторы 20 и 21 и далее также к выводу Ш

Обмотка 8 способствует ускорению замыкания контактов 9, поскольку включена последовательно в цепь обмотки возбуждения генератора и создает магнитный поток, совпадающий по направлению с магнитным потоком основной обмотки ОТ.

Как известно, в любом транспортном средстве генератор является одним из основных узлов, выход из строя которого не позволит осуществить запуск двигателя. Такое устройство состоит из множества компонентов, но одним из самых основных является трехуровневый регулятор. Что представляет собой это устройство напряжения, каково его назначение, какие бывают виды, как произвести диагностику — читайте ниже.

Характеристика регулятора напряжения

Новое и старое реле регулятора

Сколько генератор должен выдавать напряжения, какие существуют виды выносных реле, как работает элемент? Какие признаки неисправности, как повысить или увеличить выходные показатели, что делать если напряжение прыгает? В первую очередь, необходимо разобраться с вопросами конструкции и назначения.

Назначение

Итак, какие признаки неисправности, какие функции выполняет трехуровневый регулятор напряжения? Когда двигатель любого автомобиля запускается, в первую очередь, под воздействием постоянного тока, начинает работать коленвал. Именно из-за постоянного тока он начинает задавать движение ротору, и только после этих действий в работу вступает непосредственно автомобильный генератор. Трехуровневый регулятор напряжения производит мониторинг всех этих процессов, этот элемент также часто называется реле постоянного тока.

Без этого устройства ток в бортовой сети не сможет запустить сам генератор в работу, тем более, что не будет осуществляться контроль подачи тока. Кроме того, трехуровневый регулятор напряжения позволяет удерживать ток в определенном интервале.

Конструкция

Общая схема работы

Даже самый простой и самодельный регулятор должен быть способным оптимально регулировать напряжения, что осуществляется в результате работы ротора. Как правило, в автомобилях современного производства ротор крутится вправо, но бывают и исключения.

Читайте также:  Хрипит динамик в авто что делать

Любой регулятор напряжения генератора, даже самодельный и простой будет состоять из следующих компонентов:

  1. Крыльчатка. Этот компонент монтируется на внешней стороне устройства. Его предназначение заключается в обдуве, а также дальнейшем охлаждении обмотки.
  2. Крышка корпуса, предназначена для закрытия доступа к внутренним компонентам устройства, чтобы защитить конструкцию от грязи, пыли и прочего мусора. Помимо этого, крышка может быть дополнительно оснащена кожухом. Если кожух имеется, то сам регулятор будет установлен за ним.
  3. Устройство выпрямителей. Такая схема состоит из нескольких диодов. Как правило, диодов шесть. Следует отметить, что все диоды схемы подсоединяются друг к другу по так называемому мосту.
  4. Ротор с обмоткой. Данный компонент вращается вокруг оси, таким образом, ротор должен выдавать магнитное поле в корпусе.
  5. Статор — еще один компонент схемы. На корпусе статора находится три обмотки, которые соединены между собой. Эти обмотки схемы позволяют не только выдать большое количество заряда и мощности для АКБ, но и обеспечить постоянным током всю бортовую цепь машины.
  6. Непосредственно реле. Благодаря автомобильному реле схема может поддерживать оптимальный уровень напряжение в необходимом диапазоне. Напряжение не должно быть слишком большое — оно всегда оптимальное (автор видео — Николай Пуртов).

Сколько мощности в амперах должен выдавать автомобильный регулятор после подключения? Схема выработки напряжения осуществляется по определенному принципу. В результате вращений ротора, на обмотку возбуждения всегда воздействует не очень большое напряжение, пока генератор подключен к АКБ. Пока происходит вращение, на выводах появляется переменный ток, поступающий на обмотку. Вращение ротора обеспечивается ремешком генератора.

Сколько должен выдать энергии этот прибор — второстепенный вопрос, ведь когда эта энергия сгенерированная, в первую очередь большое напряжение нужно выпрямить. Для этой цели используются диодные мосты. Поскольку напряжение большое, в работу вступает электронный регулятор напряжения. Данный компонент реагирует на изменения тока, которые происходят на схеме, после чего отправляет эту информацию к сравнивающему прибору, предназначенному для анализа необходимых показаний с теми, которые поступили. Если напряжение на зажимах генератора становится более низким, регулятор начинает увеличивать уровень постоянного тока в схеме, повышая его до необходимого.

Принцип работы

Если подключить к источнику питания обмотку без регулятора, то уровень постоянного тока будет слишком высоким. Благодаря реле на схеме происходит выравнивание этого параметра, чтобы не допустить выхода из строя оборудования. Сам регулятор представляет собой, по сути, выключатель. В том случае, если уровень тока возрастает до 13.-14 вольт, устройство автоматически отключает от сети обмотку и включает ее, если уровень тока слишком низкий. В итоге осуществляется регулярная коммутация проводки с высокой частотой, соответственно, генератор может вырабатывать более высокое напряжение (автор видео — Alex ZW).

Разновидности

Для подключения к бортовой схеме автомобиля существует несколько типов регуляторов, предназначенных для работы в условиях постоянного тока в амперах. Следует отметить, что для некоторых из них характерны определенные неисправности. Но, как показывает практика, в большинстве случаев неисправности у этих устройств обычно идентичные друг другу. Перед тем, как мы расскажем о том, как осуществляется проверка регулятора напряжения постоянного тока в автомобиле и как выявить неисправности, уделим внимание видам.

Так вы сможете понять, какой тип лучше:

  1. Двухуровневый тип является морально устаревшим, но наши автолюбители сегодня продолжают его использовать. В основе таких регуляторов лежит электромагнит, который подключается к датчику обмотки. В качестве задающих элементов выступают пружины, а функцию сравнивающего компонента выполняет подвижный рычаг. Его габариты довольно небольшие, с его помощью выполняется коммутация. Основным недостатком, который зачастую приводит к неисправности, является небольшой ресурс использования устройства.
  2. Электронные устройства на 40 ампер считаются полупроводниковыми. Они характеризуются высоким ресурсом эксплуатации, соответственно, с неисправностями владельцы автомобилей с электронными регуляторами сталкиваются реже.
  3. Трехуровневые конструкции по своему устройству практически не отличаются от тех, которые мы уже рассмотрели. Принципиальная разница заключается только в том, что такие устройства оснащены добавочным сопротивлением.
  4. Многоуровневые — еще один вид. Некоторые эксперты считают, что такие регуляторы лучше других, поскольку они оснащаются тремя и даже пятью добавочными сопротивлениями. Кроме того, есть модели, которые могут работать в следящем режиме.

Стоимость регуляторов может варьироваться в зависимости от типа и модели. Какой лучше приобрести — дело сугубо каждого. В среднем стоимость таких элементов варьируется в районе 5 долларов. Если вам позволяет бюджет, лучше приобрести сразу два регулятора. Почему лучше? Потому что эта деталь является незаменимой в дороге.

Проведение диагностики регулятора напряжения своими руками

Как проверить регулятор напряжения автомобиля для выявления неисправностей своими руками? Что лучше замерить своими руками — амперы или вольты, чем лучше воспользоваться. Для выявления неисправностей своими руками необходимо использовать мультиметр или вольтметр. Необходимо, чтобы на устройстве была шкала для измерений на 15-30 вольт. Диагностику неисправностей автомобильного реле на 40 ампер или ниже своими руками с помощью мультиметра необходимо осуществлять только при заряженном аккумуляторе.

Диагностика вышедшего из строя реле с помощью вольтметра

  1. Сначала необходимо включить зажигание.
  2. Запустите своими руками двигатель, дайте ему поработать, при этом фары необходимо включить. Пусть мотор работает, пока количество оборотов не составит около 2.5-3 тыс. Как правило, для этого необходимо подождать около 10 минут.
  3. При помощи вольтметра произведите замер напряжения на клеммах АКБ. Параметр должен составлять около 14.1-14.3 вольт.

В том случае, если во время диагностики показатели получились ниже или выше, лучше приобрести новое реле на 40 ампер. В ходе диагностики штекеры ни в коем случае нельзя перемыкать, поскольку это может привести к деформации и неработоспособности выпрямительного блока. Для получения более точных показателей необходимо убедиться в том, что ремень генератора натянут хорошо.

Видео «Диагностика состояния реле регулятора»

Как своими руками осуществить проверку неисправностей этого элемента — узнайте из видео ниже (автор видео — Вячеслав Чистов).

Извините, в настоящее время нет доступных опросов.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

error: Content is protected !!
Adblock
detector