Меню Закрыть

Система активного шумоподавления своими руками

Расшифровывая RPO коды комплектации отцовского equinox-а, обнаружил интересное оборудование – оказывается на машине установлена так называемая Система активного шумоподавления (Active Noise Cancellation) далее ANC. RPO код VQN.

Инженеры GM так хотели сделать «идеальный» и тихий двигатель, что додумались до этой системы. Точнее, позаимствовали эту идею то ли у Toyota, то ли у Honda.
В общем, меньше лирики, больше смысла.

Так вот, система ANC внедряется на автомобили Chevrolet Equinox и GMC Terrain, начиная с 2010 года выпуска. Смысл работы системы заключается в уменьшении шума на определённых скоростях, при определённых оборотах двигателя путём создания звуковых волн определённой частоты.

Сама система внедрена в штатную аудиосистему автомобиля и работает в связке с ней.

Она состоит из четырёх компонентов:
1. Модуль ANC

2. Микрофоны (2 штуки)
3. Аудиоусилитель
4. Динамики

Система использует в своей работе два микрофона, установленных в потолке для обнаружения шума в автомобиле, вызванного двигателем и RPM сигнал от тахометра для определения скорости вращения двигателя. Для чего, спросите, сигнал от тахометра? Всё просто – что бы система могла понимать, что нежелательный шум идёт именно от двигателя, а не от разговоров пассажиров или шума дороги, ветра.

Микрофоны, установленные в салоне автомобиля, улавливают амплитуду и фазу звуковых волн шума двигателя и передают эту информацию в модуль ANC. Процессор в модуле анализирует эту информацию и на её основе генерирует звуковые волны, которые имеют ту же амплитуду, как и шум двигателя, но с перевернутыми фазами. Эти перевернутые звуковые волны направляются через динамики в передних дверях автомобиля и сабвуфер в задней части таким образом, что в сочетании с оригинальной звуковой волной шума двигателя происходит их компенсация друг друга. Система позволяет снизить уровень низкочастотных шумов на 5-8 ДБ, чем достигается уровень комфорта соизмеримый с шумоизоляцией элитного лимузина. (Ну, эт они, конечно, загнули))

Вот такая вот система. Плюс, ещё по утверждению GM, эта система позволяет экономить топливо. Во-первых, тем, что не используются дополнительные звукопоглощающие изоляционные материалы, увеличивающие вес автомобиля. А во-вторых, наш двигатель имеет такую особенность, что в диапазоне до 2000 оборотов в минуту у него самый экономичный режим работы (в основном на холостых), но в то же время в этом диапазоне он производит очень много вибраций и низкочастотного шума. А система позволяет безболезненно потребителю не слышать этого и экономить при этом топливо.))

Да, для корректной работы системы рекомендуется не закрывать ничем динамик сабвуфера.

Так же не стоит забывать, что система ANC является частью аудиосистемы автомобиля и поэтому все её составляющие (усилитель, динамики) должны быть в рабочем состоянии, чтобы система ANC правильно функционировала.

Лично я немного насторожено отнёсся к этой информации, так как не совсем верю в чудодейственную силу электроники там, где бессильны физика и механика))
Хотя, могу ошибаться…))

Посторонний акустический шум и методы его подавления

Акустические шумы сопровождают радиолюбителя на протяжении всех его занятий радио. Проблема усугубляется, если в составе радиостанции имеются устройства, производящие шум, например: компьютер, усилитель мощности со встроенным вентилятором. Сюда можно добавить расположенные рядом бытовые приборы: телевизор, холодильник, вентилятор, обдувающий собственно самого оператора в зонах с жарким климатом, а также пребывание рядом других людей, создающих дополнительную шумовую нагрузку.

Все это приводит к тому, что передача оператора сопровождается локальным шумом, снижающим разборчивость передающего сигнала. Негативный фактор этого явления проявляется еще больше, когда применяется компрессия или ограничение. Чем выше уровень обработки сигнала, тем больше слышны шумы в канале.

Иногда проблема успешно решается с применением антишумовой гарнитуры ГСШ-А-18, предназначенной для работы в условиях акустических шумов. Однако, характеристики настольного микрофона, как правило, будут выше, чем у гарнитуры даже такого высокого класса [1], поэтому многие используют настольные или даже студийные микрофоны.

Несколько снизить шумы в канале передачи можно, включив в противофазе два динамических микрофона, соединив положительный вывод одного из них с отрицательным выводом другого (рис.1).

Два свободных вывода подключают к микрофонному усилителю. В этой схеме, а также и в последующих других основной микрофон находится перед оператором, а другой, не основной, располагается рядом с источником шума, например, с усилителем мощности. Точное расположение второго микрофона и расстояние между ним и источником шума определяется экспериментально. Подбирая точное местоположение не основного микрофона, добиваются минимума локальных шумов в головных телефонах используя систему "Самоконтроль" в трансивере или контрольный связной приемник.

Принцип работы устройства прост. Окружающие шумы попадают на оба микрофона одновременно, происходит их взаимное подавление. Однако речь оператора поступает только на один микрофон и вторым микрофоном практически не улавливается. Следует сказать, что обозначение полярности выводов микрофонов чаще встречается у микрофонов зарубежного производства, причем, чем выше класс микрофона, тем больше есть вероятность того, что полярность обозначена. Например, динамический микрофон ХМ8500 фирмы Behringer, SM58 Shure, а также ряд других имеют обозначения выводов: hot (+ve) и cold (-ve) соответственно. У большинства наших динамических микрофонов автору так и не удалось найти обозначение полярности, поэтому соединения выводов производились экспериментально.

Это простой способ устранения шума в канале. Проблема, тем не менее, остается и требует серьезных решений. На мой взгляд, есть три пути решения этой проблемы.

Читайте также:  Течь тосола в салоне ваз 2109

Первый, в современном мире практически невыполнимый, поскольку предполагает полную изоляцию от людей окружающих нас в квартире, от компьютера, современного усилителя мощности с вентилятором, от открытого окна из которого слышен шум улицы.

Второй путь, это использование профессиональных цифровых устройств обработки звука, в состав которых наряду с основными функциями заложена функция подавления постороннего шума в канале в паузах между словами. Называется она системой Noise Gate и работает весьма успешно даже в условиях очень высоких акустических шумов. Автором используется одно из таких устройств — цифровой процессор эффектов DSP2024P фирмы Behringer, в котором заложен также и Noise Gate. При отработке данного вопроса включенными были компьютер, усилитель мощности с вентилятором, а также дополнительный вентилятор создававший комфортные условия в комнате, поскольку дело было летом. Испытания прошли успешно. Система Noise Gate работала превосходно. Выяснилось, что единственный недостаток подобных цифровых устройств — их высокая стоимость.

Третий путь решения проблемы более доступный многим радиолюбителям, это изготовление простых самодельных схем, которые в своем классе работают достаточно эффективно, хотя, безусловно, уступают работе сложных цифровых устройств.

Находясь в контакте с многими людьми, которые занимаются этой проблемой, автором был проведен анализ работы самых различных конструкций. При появлении первых успехов интерес к экспериментам сильно возрос, изготавливались различные системы шумоподавления, проводились испытания, что в последствии привело к неплохим результатам. Очевидным стало то, что самодельные, простые устройства тоже работают в своем классе и дают положительный результат.

Хочу выделить несколько схем, которые просты и эффективны.

Схема устройства, которое популяризировал G8SEQ, John [2] показана на рис.2.

Здесь используется два электретных микрофона. Подбор в цепи питания электретных микрофонов осуществляется резисторами R6 и R7, а при использовании динамических микрофонов эти резисторы из схемы исключаются. В зависимости от чувствительности микрофонов производится подбор резистора R3,
который определяет усиление каскада. Подбор по номиналу конденсатора С4 приводит к небольшому частотному изменению сигнала. Выход схемы подключают к Балансному Модулятору трансивера, а при отсутствии такой возможности, к микрофонному усилителю трансивера, при этом необходимое усиление каскада устанавливается с помощью резистора R3. Применение малошумящего операционного усилителя LF351 дает возможность иметь высококачественный микрофонный усилитель, хотя с успехом можно применить любые другие малошумящие ОУ, например, TL071, TL081 и особенно NE5534. Возможно применение К544УД1А нашего производства. Применять же то, что есть под рукой, например, К140УД7 или что-либо другое не оправдано, поскольку малошумящие ОУ в настоящее время найти не проблема, в том числе и импортные.

Рассуждения о том, что шумы в трактах наших передатчиков и приемников гораздо выше, чем уровень шумов в микрофонных усилителях изготовленных из случайных элементов несправедливы. Такие высказывания носят не технический характер, поскольку хоть при малейшем изучении вопроса становится ясно, что применение малошумящих элементов (даже резисторов!) во всех каскадах трансивера — залог выхода на высокий уровень качества.

Если говорить об отношении сигнал-шум, как об одном из важных параметров МУ, а также о снижении электрического фона в канале микрофонного усилителя, вспоминается старая теория, которая справедлива и по сей день. Речь идет о том, что микрофонный усилитель должен иметь на выходе амплитуду 250мв. Помните стандарт на линейный уровень сигнала в звукотехнике? Даже если Балансный Модулятор трансивера для формирования SSB сигнала требует НЧ сигнал порядка 70мв, желательно чтобы МУ развивал амплитуду 250мв, а затем уровень уменьшают до необходимого. У такого МУ, как правило, показатель сигнал-шум и другие параметры будут в норме. Например, если в тракте с таким уровнем сигнала применяется обработка как НЧ компрессия или работа эквалайзера, то это будет выполнено на более качественном уровне, нежели при малой амплитуде сигнала в канале. Симметричное включение микрофона приветствуется, равно как и двухполярное питание, а также правильный режим работы МУ по постоянному току.

Следующая схема шумоподавления, авторы WB9YBM и N9BRL [3] показана на рис.3.

Транзисторы VT1 и VT3 обеспечивают фазовый сдвиг, необходимый для подавления локальных шумов. VT2 и VT4 работают как буферные усилители. Далее сигнал идет к трансиверу. Резистор R2 подбирают или устанавливают вместо него потенциометр 22 к. Подстройка этого элемента также способствует максимальному подавлению постороннего шума в канале. Транзисторы желательно использовать те, что показаны на схеме. Они не являются дефицитными, хотя можно применить КТ315, КТ317, но лучше все же применить 2N2222. Не стоит применять КТ3102. Для них нужен свой режим и те компоненты, показанные на схеме не соответствуют их режимам по постоянному току. На рисунке показан стабилизатор +9в собранный 7809 (LM7809, IC7809) которым питают МУ и электретные микрофоны.

Более совершенное устройство шумоподавления с использованием современного ОУ NE5534 предложил Mark, GW0WVL при личной переписке. Блок схема устройства показана на рис.4.

Устройство состоит из Anti-phasе (противофазного) микшера, рис.5 и предусилителя микрофона, рис.6.

Как уже говорилось, местоположение не основного микрофона подбирают экпериментально, добиваясь минимума постороннего шума в канале. При этом подбирают оптимальное положение движка потенциометра VR1, рис.5, напрямую влияющего на полученный результат подавления шума. Предусилитель микрофона, рис.6 является дополнительным каскадом усиления и используется только в случае необходимости, т.е. при нехватке амплитуды МУ для нормальной раскачки трансивера.

Обсуждая тему подавления акустических шумов, нельзя не вспомнить еще один проект с использованием микросхемы SSM2166 фирмы Analog Devices. В заводском описании микросхемы (файл прилагается) дается полное включение микросхемы как достаточно высокого класса микрофонного усилителя с применением НЧ компрессии и системы Noise Gate. Здесь же полная информация по внутренней структуре SSM2166 и подробное описание по настройке устройства с помощью измерительной аппаратуры. Приводится принципиальная схема и заводской вариант печатной платы. Несмотря на простоту, устройство показало себя в работе положительно. НЧ компрессия и система шумоподавления работают на высоком уровне, однако, чувствительность микросхемы порядка 15мв, что предполагает применение электретного микрофона. Использование динамического микрофона возможно только в случае применения дополнительного каскада усиления, иначе невозможно выйти на заданный уровень компрессии. При использовании такого дополнительного каскада следует уделить внимание его качественным показателям, в частности АЧХ, которую будет все же трудно создать должным образом в каскаде на одном транзисторе.

Читайте также:  Scher khan magicar 10 mini отзывы

Отдавая должное заводскому варианту включения микросхемы, я все-таки предпочел конструкцию под названием "MikeMaster", рис.7 автором которого является W6FR, Marv Gonsior [4].

Его вариант включения SSM2166 мало чем отличается от заводского, однако он более адаптирован для радиосвязи. Например, заводской вариант включения микросхемы предусматривает весьма большой уровень компрессии, который в радиосвязи можно обозначить как критический. Также в заводском варианте АЧХ тракта явно не для наших целей, а скорее больше соответствует стандартам обработки звука в Hi-Fi системах. В варианте включения микросхемы W6FR уровень компрессии оптимальный. Показатель АЧХ на порядок выше, тем не менее, требуется ее небольшая коррекция.

Если говорить о высоком качестве обработки сигнала, то у меня сложилось впечатление, что частотная характеристика тракта этого компрессора в любом включении оставляет желать лучшего. По логике сигнал с выхода устройства следует подавать на вход Балансного Модулятора трансивера, однако при такой коммутации окраска сигнала была слегка размазанной, что снижало разбираемость. Когда сигнал пропускался через встроенный в трансивер микрофонный усилитель, качество было безупречным. Очевидно МУ трансивера в этом случае работал не только как усилитель, но и как активный фильтр, влияя на частотный расклад тракта. Здесь сказывается то, что этот компрессор является относительно простым устройством всего на одной микросхеме, которая обеспечивает качественную работу НЧ компрессора и системы Noise Gate, но все же желательна небольшая коррекция АЧХ. W6FR, Marv также предлагает пропускать сигнал через МУ трансивера.

Тем не менее, обычно внешние устройства обработки звука как НЧ компрессор, НЧ ограничитель, эквалайзер, цифровой ревербератор всегда коммутируются непосредственно на БМ, а при его отсутствии (в некоторых современных трансиверах БМ как таковой отсутствует) на вход SSB формирователя, минуя встроенный в трансивер МУ. Это объясняется тем, что внешние устройства обработки сигнала по микрофону являются устройствами более высокого класса и не нуждаются в какой-либо коррекции со стороны МУ трансивера. Случай с микросхемой SSM2166 является исключением.

Несколько слов о конструкции MikeMaster W6FR.

Печатную плату разработал EW2CE, Александр (TKS Alex). Файл PCB MikeMaster.lay открывается программой Sprint layout v.4.0. Печатная плата разработана под микросхему SSM2166 в корпусе DIP и отражает вариант с эммитерным повторителем на выходе, а не с трансформатором как у W6FR. Оба варианта рабочие, просто трансформатор с коэффициентом трансформации 1:1 (600 ом : 600 ом) найти не всегда просто. При желании печатная плата легко переделывается и вместо повторителя устанавливается трансформатор. Все потенциометры расположены на печатной плате. На принципиальной схеме рядом с обозначением потенциометров мы видим сокращение — CW (Clockwise) — по часовой стрелке. Здесь соблюдена логика, когда увеличивают уровень компрессии, вращают потенциометр по часовой стрелке, и наоборот, уменьшают его против часовой стрелки. Так дело обстоит и с другими регулировками.

Некоторые номиналы потенциометров не соответствуют нашим стандартам. Без ухудшения работы схемы можно произвести следующие замены:
R3 50к на 47к
R5 50к на 47к
R6 5к на 6,8к (но не на 4,7к — иначе не выйдем на заданный уровень компрессии. Чем больше общий номинал резисторов R12 и R6 между выводом 10 микросхемы и общим проводом, тем выше уровень компрессии)
R7 500к на 470к
R11 20к на 22к

Примечание:
U2 -78L05 стабилизатор напряжения +5в, на ток 100ма
D1 -1N4001 или любой другой
С6,C7 — 4,7мк (обязательно одинаковые по номиналу)
С2 — 1мк (желательно танталовый)

Установив необходимое напряжение на выходе с помощью потенциометра R5 "Выход", устанавливают уровень компрессии с помощью R6 "Компрессия". При этом R10 "Усиление" устанавливают в оптимальное положение, вращая движок в направлении от минимума к максимуму. Потенциометр R3 "Rotation Point" определяет границу, где заканчивается область компрессии и наступает область легкого ограничения (лимитера пиков сигнала, устраняя выбросы). Его вращение по часовой стрелке уменьшает "Rotation Point" и наоборот, вращением против часовой стрелки увеличивает его.

Подбором R11 "Спад" и R7 "Noise Gate" добиваются правильной работы системы подавления акустических шумов в паузах между словами. Первоначальное положение движка R7 максимально закрученное по часовой стрелке, затем вращением против часовой стрелки добиваются четкой отработки Noise Gate.
Правильный подбор положений потенциометров — залог качества работы компрессора.

Не следует перекачивать микрофонный усилитель трансивера. Регулировка усиления МУ в трансивере, как правило, осуществляется между первым и вторым каскадами, поэтому первый каскад легко перегрузить.

Макс Любин

Интересуясь портативной аудио техникой, большинство из нас однажды сталкивается с таким понятием, как активное шумоподавление. Устройства с этой системой стоят ощутимо дороже и производятся далеко не всеми компаниями. Неужели это такой секрет и тайна за семью печатями, что знают о ней лишь посвященные?

Читайте также:  Фара правая лада приора

Предлагаю попробовать разобраться.

Немного истории

Может показаться, что такая технология должна была появится сравнительно недавно. По крайней мере точно в 21 веке. Однако, реальность часто умеет удивлять. Первый патент на систему управления шумом был выдан в США изобретателю Полу Люгу (Paul Lueg) еще в 1934 году.

Однако, в потребительскую электронику эта система попала гораздо позднее.

Начиная с 50-х годов прошлого столетия, система активного шумоподавления использовалась в узкоспециализированных сферах. Например, в авиации.

В 1957 году, Уиллардом Микером была разработана схема, которая при своих компактных размерах (помещалась в накладные наушники) позволяла отсечь шум на звуковом диапазоне от 50 до 500 Гц с максимальным затуханием около 20 дБ.

Родоначальником производства серийных моделей наушников с системой активного шумоподавления считается компания Bose, которая в конце 80-х годов 20 века представила первую серийную модель наушников с системой активного шумоподавления.

Однако. несмотря на серийный выпуск, о массовой продаже речь не шла. Покупателями наушников были авиакомпании, желавшие обеспечить пилотов защитой от внешних шумов двигателей самолетов и вертолетов, что позволяло комфортно вести переговоры. Однако, уже к 1989 году в Bose адаптировали технологию для широких масс.

Как это работает?

На самом деле в работе шумоподавления нет ничего сложного. Системы активного шумоподавления основаны на процессе интерференции волн.

Иными словами, если создать зеркальное отражение звуковой волны (инвертировать), и наложить ее на исходную, то звуковые волны погасят друг друга.

Для захвата окружающего звука, наушники с системой активного шумоподавления (САШ) оснащены одним, или несколькими микрофонами, которые слушают окружающие звуки. Затем, эти звуки передаются в электронный блок, в котором и происходит анализ и их инвертирование. Затем полученную зеркальную волну (с перевернутой фазой) подают на динамик. Эти звуковые волны в процессе интерференции смешиваются в новую волну и подавляют друг друга.

Наиболее эффективно такие системы справляются с шумом от 100 Гц до 1 КГц.

Основным конструктивным ограничением таких систем является необходимость наличия дополнительного электронного блока, с отдельным источником питания.Именно этот блок обрабатывает внешние звуки и создает сигнал в противофазе. В случае с накладными и мониторными наушниками, это не проблема, так как конструкция последних позволяет разместить начинку и источник питания внутри чаши наушника.

«Вкладышам» и «затычкам» требуется отдельный блок снаружи, что уже выглядит не так эстетично.

Однако, существует еще один вариант — размещение всей необходимой электроники внутри устройства воспроизведения. Такой подход чаще всего использует Sony. Ограничением такого типа является то, что оба устройства, и «плеер» и «наушники» должны быть совместимы и обладать необходимыми компонентами. В качестве примера можно привести смартфон Sony Z2 в комплекте с наушниками Mdr-nc31em

Производством наушников с САШ занимаются многие компании, как именитые так и не очень.

На данный момент можно констатировать, что у именитых это получается лучше, так как кроме качества железа, такого как портативные микрофоны, элементы питания, и процессоры обработки сигнала, не менее важным является качество программного обеспечения, обрабатывающего сигнал. А разработку качественного ПО могут позволить себе только компании имеющие достаточную материально-техническую базу и штат профессионалов в этой области.

Однако, учитывая удешевление комплектующих, миниатюризацию компонентов и рост доступности технологий, все больше компаний начинают выпускать свои аудио устройства оснащенные САШ. Может быть где то уже появился конкурент Bose.

Неужели все так безоблачно?

Увы нет. Системы шумоподавления подходят далеко не каждому. Существует определенный процент людей, которые не могут пользоваться подобными системами из-за особенностей вестибулярного аппарата.

Как не пробуя такие системы понять подойдут они вам или нет?

Например, если вы подвержены морской болезни, то с большой долей вероятности система активного шумоподавления вызовет у вас головную боль. Происходит это из-за несоответствия информации поступающей в мозг из разных источников. Когда вы находитесь в каюте корабля, мозг анализируя картинку думает, что тело находится в покое, а вестибулярный аппарат посылает противоположные сигналы. При работе САШ мозгу кажется, что мы находимся в тихом месте, однако информация приходящая от других органов чувств противоречит слуху. Происходит перенапряжение мозга, и как следствие, головная боль.

Кроме этого, не следует забывать и о том, что для того чтобы подавить шум, система производит анти-шум. И если слух нам удается обмануть. то нервную систему не обманешь.

Как же быть?

Несмотря на «такие страшные» негативные последствия, не стоит отчаиваться. Процент людей, у которых САШ вызывает головную боль или тошноту не так уж велик. Согласно исследованиям, это всего 5-6% от общей массы. Несмотря на это, перед покупкой, настоятельно рекомендую послушать наушники оснащенные САШ не менее 1,5-2 часов. Обычно именно за это время проявляются побочные эффекты, если они для вас есть.

Хотелось бы услышать ваш опыт использования наушников с САШ, если таковой был. А если такого опыта не было, то хотели бы вы попробовать наушники с системой активного шумоподавления?

«>

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

error: Content is protected !!
Adblock
detector