Меню Закрыть

Гальваническая очистка от ржавчины

Привет всем. О электролизном способе очистки заржавевших деталюшек слышали многие. Но, наверное есть и такие которые имеют слабое представление о этом крайне полезном действии, которое запросто заменяет щетку и пескоструйную обработку.
Вот есть у нас очень заржавленный, но ровный диск. Можно конечно было поработать над ним болгаркой с корщеткой часик-полтора, но я пошел путем для более ленивых — методом электролиза.

Для этого нужно:
1.Емкость для раствора — я приобрел большой тазик из резины (в принципе подойдет из любого диэлектрика)2.Вещество, водный раствор который будет электролитом — лучше всего сода, пищевая или кальцинированная, она не вызывает химических ожогов (как например щелочи) и легко отмывается, не способствует дальнейшей коррозии (как например поваренная соль, хлорид-ионы который потом сложно отмыть.3. Вода. Обычная из водопровода.

4. Источник ПОСТОЯННОГО тока. Лучше всего в пределах 12-24 вольт и с регулировкой и индикацией тока. Зарядное устройство или блок питания от компа подойдут.

Я использую старое ЗУ для аккумуляторных батарей на 20 А, с индикацией тока и напряжения и ступенчатой регулировкой.5. Положительный электрод-анод. Материалом для него лучше всего будет нержавейка. Если нет нержи, то на крайняк можно взять чернуху. Но электрод из обычной стали будет быстро растворятся.

Заливаем воду в сосуд. Делаем раствор. Сколько идёт соды на литр воды сказать сложно. Это зависит от формы детали, расстояния между электродами, напряжения. Я ориентируюсь по току. На тазик который я брал ушло около 600 г кальцинированной соды. Крепим «-» от источника на деталь (она у нас будет катодом). Способов есть куча. Можно струбциной ( со струбцины может облезть краска), можно болтом как я.Главное чтобы был хороший контакт. Опускаем деталь в раствор.

Крепим «+» от источника на анод. Анод, как я уже писал, лучше всего из нержавейки. Обычная сталь будет растворятся, но если нет под руками старой ненужной ложки/вилки или корыта от старой стиралки то на один раз пойдет и чернуха. Заметил, правда, что если использовать обычную сталь для анода, то на обрабатываемой детали оседает темный налет, который потом нужно смывать.

В идеале форма анода должна быть такой, чтобы охватывать всю площадь обрабатываемой детали, в противном случае процесс будет идти с разных сторон не равномерно и деталь придется переворачивать. На практике сделать такой электрод сложно, особенно если чистим крупногабаритное изделие, поэтому крутить детальку скорей все равно придётся. Лично я, в данном случае делал электроды из чернухи, так как нержавейки в этот момент не нашел. Вот форма электрода для очистки лицевой стороны диска :Для обратной:Опускаем анод в раствор. ВНИМАНИЕ! Анод и обрабатываемая деталь не должны касаться, должен быть промежуток из раствора или диэлектрика.

Включаем наш источник тока. Всё начинает бурлить в тазике — процесс начинается. Если есть показометры то смотрим на них. Скорость очистки зависит от силы тока, который идет через электроды. А она в свою очередь, зависит от мощности источника.

Регулировать ток можно 3-мя способами:
1. Самим источником (если конечно есть на нем возможность регулировки)
2. Концентрацией соды — больше соды в растворе больше ток.
3. Расстоянием между анодом о изделием которое мы чистим. Чем ближе они тем больше ток.

Какой максимальный ток ставить тут зависит от вашего источника. Можно хоть 100А, но лучше без фанатизма, лучше подождать часок-другой, чем спалить устройство, особенно если оно без защиты по перегрузке и перегреву. Лично я ставлю 10-15 А.

Нужно ещё учесть то, что при большом токе раствор нагревается (получается солевой обогреватель). Вот как выглядит раствор после часа очистки, борщик варится отличный)))После нескольких часов чистки достаем деталь и металлической щеткой под проточной водой чистим отошедшую ржавчину и смотрим на результат. Если ржавчина еще присутствует то оставляем еще на пару часиков.Вот результат:Лицевая сторонаВнутренняя сторона
Ржавчины нет совсем.
Вот пример очистки скобы тормозного механизма ВАЗ 2108

После

ВНИМАНИЕ! Газы которые выделяются в процессе электролиза это водород и кислород. Их смесь зовётся гремучим газом, хоть и совсем не ядовитая, но очень ВЗРЫВООПАСНАЯ! Поэтому работы проводить в очень хорошо проветриваемом помещении, либо на свежем воздухе!

Автор; Владимир Бездух г.Тернополь, Украина

Цинк относится к материалам, широко используемым для защиты стали от коррозии. В промышленности его наносят на стальные детали различными способами.

Читайте также:  Веста св кросс шины 195 65 15

К ним относятся: нанесение цинковых покрытий гальваническим способом, непрерывное горячее цинкование листового материала, проволоки и цинкование стальных изделий погружением.

Когда сталь покрывают цинком в первый раз, покрытие не успевает образовать защитную оксидную плёнку и цинк, скорее всего, окислится при контакте с пресной водой.
В то время, как многие из этих технологий покрытия используют сплавы цинка (например, с алюминием), большинство изделий покрываются практически только цинком. Общая проблема для всех этих изделий – это явление «белой ржавчины», для которой в качестве эвфемизма используют также название «белые пятна».

Хотя действие данного механизма вполне понятно, его распространение представляет серьёзную трудность, как для производителей гальванических изделий, так и для тех, кто пользуется этими изделиями. Проблема возникает из-за того, что часто бывает очень трудно распределить ответственность за ущерб, наносимый гальваническим изделиям белой ржавчиной, так как покрытие сразу после нанесения может быть в идеальном состоянии.

Особую трудность представляет экспорт или импорт в контейнерах, хранение в течение длительного периода и транзит из умеренных в тропические климатические зоны. После доставки покупатель может отказаться от покрытия из-за ржавчины, появившийся в ходе транспортировки. И кто же ответственен за это?

МЕХАНИЗМ ФОРМИРОВАНИЯ БЕЛОЙ РЖАВЧИНЫ

Цинк – сравнительно реактивный металл и он активно реагирует и с кислотами, и со щёлочами. Лучше всего он проявляет свои антикоррозионные свойства в pH-нейтральной среде и потому является хорошим защитным покрытием практически при любом климате за исключением морского.

Как бы то ни было, долговечность цинковых покрытий, как и алюминиевых, зависит от формирования оксидной плёнки. После формирования данной оксидной плёнки уровень коррозии цинковых покрытий становится очень низким – обычно толщиной два микрона или меньше за год в нормальной среде.

Если покрытие на сталь было только что нанесено, цинк пока что не образует плёнки на поверхности. Химические реакции, требуемые для формирования этой плёнки, занимают некоторое время.

1. Фаза окисления 2Zn + O2 = 2ZnO
2. Фаза гидратации 2Zn = 2H2O + O2 = 2Zn(OH)2
3. Карбонизации 5Zn(OH)2 = 2CO2 + 2ZnCO3.3Zn(OH)2 + 2H2O

Именно формирование очень легко растворимой в воде оксидной плёнки обеспечивает нижний слой цинка хорошими антикоррозионными свойствами.

Другие реакции могут происходить при наличии хлоридов, сульфатов и других разъедающих веществ, которые могут сильно ускорить разрушение цинкового покрытия. Именно воздействие воды на поверхности со «свежими» цинковыми покрытиями является основным механизмом возникновения белой ржавчины.

Чистая вода (H2O) не содержит растворённых солей или минералов, и цинк довольно быстро реагирует с чистой водой, формируя гидроксид цинка – белый по цвету, относительно нестабильный оксид цинка. Если только что гальванизированная сталь будет подвергаться воздействию чистой воды (дождь, роса или конденсат) в среде, где не хватает кислорода, вода будет продолжать реагировать с цинком и постепенно разъедать покрытие. Наиболее часто распространённые условия, в которых появляется белая ржавчина – гальванические изделия хранятся плотно прижатыми друг к другу либо вода проникает между изделиями и остаётся на длительный срок.

В благоприятных (для белой ржавчины) условиях разъедание цинка может происходить при уровнях коррозии в 20-50 раз больших, чем обычно предполагается.

Большой слой белый ржавчины, вызванной водой, просочившейся между набором деталей

Гальванические изделия, прежде всего, пассивировались раствором дигидрата дихромата натрия, благодаря которому они приобрели лёгкий желтоватый оттенок и лучшую сопротивляемость ржавчине.

КАК ИЗБЕЖАТЬ ПОВЯЛЕНИЯ БЕЛОЙ ПЛЁНКИ

Существует некоторое количество простых советов, которые могут помочь вам сильно уменьшить или прекратить формирование белой ржавчины. Это:
Держите изготовленные изделия в сухости.

Упаковывайте изделия, чтобы между поверхностями циркулировал воздух.

Ставьте упакованные изделия под углом друг к другу, чтобы вода могла вытекать.

Обрабатывайте поверхность подходящим водоотталкивающим средством либо создавайте барьерные покрытия для предотвращения контакта влаги с гальванической поверхностью.
Обеспечьте необходимую вентиляцию при транспортировке гальванических изделий на длительные периоды.

ОБРАБОТКА ГАВЛЬВАНИЧЕСКОЙ ПОВЕРХНОСТИ, ПОВРЕЖДЁННОЙ БЕЛОЙ РЖАВЧИНОЙ

Как только гальваническая поверхность начнёт реагировать, и сформируются соединения гидроксида цинка, желательно удалить соединения оксида с поверхности, так как:

  • Их присутствие мешает формированию стабильных оксидов
  • Их не видно
  • Их воздействие на гальванизированную поверхность может варьироваться от очень слабого до особо сильного. Доступны различные способы решения проблем ржавчины на уровнях, где они обычно случаются.

Следующие технологии рекомендуются для решения проблемы белой ржавчины на гальванических продуктах.

1. Лёгкое поражение белой ржавчиной

Читайте также:  Ремонт суппорта ваз 2110 своими руками

Оно характеризуется формированием лёгкой плёнки из белого порошкового остатка и часто возникает на только что оцинкованных поверхностях во время сильных дождей. Это особенно явно видно на участках, которые были отполированы или отшлифованы. В ходе данного процесса пассивированная поверхность удаляется с оцинкованной, и цинк оказывается подвержен воздействию дождевой воды. При хорошей вентиляции и хорошей дренажной системе белая ржавчина вряд ли продвинется дальше этой поверхностной стадии. Её можно счистить при необходимости, но обычно она уходит сама с нормальным выветриванием и стоком. На этом уровне не требуется никаких специальных мер.

2. Умеренное поражение белой ржавчиной

Оно характеризуется явным потемнением и травлением гальванического покрытия под поражённым участком, слой ржавчины получается довольно большим. Толщину гальванического покрытия надо измерить для определения уровня поражённости покрытия. В большинстве случаев менее 5% гальванического покрытия будет удалено и потому никаких специальных мер не требуется, если внешний вид поражённого участка не очень важен для нормального использования изделия; остатки гидроксида цинка удаляются с помощью очистки проволочными щётками. Если такой внешний вид неприемлем, поражённую белой ржавчиной область можно обработать следующим образом:
Используйте проволочную щётку или абразивную тряпочку для удаления последствий коррозии.
Используйте тряпочку, пропитанную алюминиевой краской, протрите поверхность тряпочкой, чтобы нанести тонкий слой алюминиевой краски на поражённую область и связать её с находящимися рядом непоражёнными гальваническими поверхностями.

3. Серьёзное поражение белой ржавчиной

Оно характеризуется отложениями оксидов в больших количествах. Детали могут приклеиваться друг к другу. Области под оксидированными участками могут быть чёрными или демонстрировать проявления рыжей ржавчины. Проверка толщины покрытия определяет степень повреждения гальванического покрытия.

Для восстановления покрытия следует предпринять следующие действия:

Протрите поражённую область проволочной щёткой или отполируйте её для удаления всех продуктов оксидации и ржавчины.

Нанесите один или два слоя эпоксидной, богатой цинком краски, чтобы достичь требуемой толщины плёнки равной 100 микронам минимум

ХИМИЧЕСКОЕ УДАЛЕНИЕ БЕЛОЙ РЖАВЧИНЫ

Pasminco (теперь Zinifex) провёл исследование эффективности химического удаления белой ржавчины и доложил о результатах в Отчёте о техническом проекте No. D713C (6 июля1995).

В этом отчёте оценивалась эффективность нескольких химических технологий, основанных на дигидрате дихромата натрия, триоксиде хрома, гидроксиде натрия и хромовой кислоте соответственно.

В этом исследовании делается вывод об эффективности двух систем в области удаления белой ржавчины и ре-пассивации очищенной цинковой поверхности.

Это следующие комбинации:

  • 420 г/л триоксида хрома + 0.5% азотной кислоты
  • 200 г/лхромовойкислоты
  • Раствор хромовой кислоты оказался наиболее эффективным для удаления остатков белой ржавчины с минимальным воздействием на подложку, в то время как комбинация триоксида хрома/хромовой кислоты лучше всего восстанавливала свойства цинковой поверхности, связанные с пассивацией.

Удаление белой ржавчины каждым из этих способов следует производить с соответствующей тщательностью и вниманием к проблемам окружающей среды и гигиены и охраны труда, связанным с обращением с химикатами данного типа. Эти технологии также подходят для местной обработки участков, поражённых белой ржавчиной.

Если белой ржавчиной поражены большие площади изделия, наиболее экономичным выходом может быть повторная гальванизация.

На краю этих перил появилась белая ржавчина в большом количестве. На тёмном участке исчезло практически всё цинковое покрытие в течение менее, чем 12 недель во время хранения во влажных условиях.

ЗАКЛЮЧЕНИЕ

Белая ржавчина – это явление, возникающее после нанесения покрытия. Ответственность за её появление лежит на том, как гальваническое изделие упаковывается, как с ним обращаются и как его хранят до установки и использования. Присутствие белой ржавчины не отражает эксплуатационные свойства гальванического покрытия, оно, скорее, демонстрирует то, что все вовлечённые в цепочку снабжения должны убедиться, что видят возможные причины появления ржавчины, и риск её возникновения на только что покрытой стали минимален.

Ржавчина на кузове автомобиля рано или поздно, но появится. Начавшись с маленького безобидного «рыжика» она в конце концов превратится в сквозную дырку. Традиционные методы борьбы с этой напастью – зачистка до металла, грунтовка, покраска – редко дают стойкий эффект. Обычно через полгода всю операцию приходится повторять заново. Удаление ржавчины с кузова автомобиля электрохимическим способом дает лучший результат.

Из-за чего появляется ржавчина

Тот рыжий налет – рыхлый или плотный, который мы традиционно называем ржавчиной, – является лишь следствием процесса разрушения железа, носящего научное название коррозия. Для его начала есть две объективные причины.

  1. Взаимодействие металла с химически активными веществами, которые окисляют его, тем самым разрушая. Ими являются все неорганические соединения, состоящие из кислорода и водорода. Самые «простые» из них – вода и кислород из атмосферного воздуха. Более сложные – водорастворимые щелочи и кислоты, получающиеся в результате этого растворения;
  2. Взаимодействие металлов друг с другом в присутствии электролита – токопроводящей жидкости. Им является, например, растворенный антигололедный реагент, которым зимой обрабатывают дороги.
Читайте также:  Как сделать хороший анализ мочи

Химически чистая – без посторонних примесей – вода, как и кислород, не очень активно взаимодействует с железом. Процесс его разрушения может длиться десятилетиями. В естественных условиях химическую реакцию окисления ускоряют морская соль и кислоты, образующиеся при взаимодействии выбрасываемых вулканами веществ. Современный город гораздо активнее вулканов и является фактически химической фабрикой по производству всего того, что разрушает металл кузова.

Почему с ржавчиной трудно бороться

Наиболее частой причиной химической коррозии, с которой сталкиваются автолюбители, является взаимодействие металла с водой, в результате чего образуется гидроксид железа – Fe(OH)3, рыхлый порошок красноватого цвета. Он является катализатором – ускорителем химических реакций для тех веществ, которые в обычных условиях могут с металлом и не взаимодействовать. Кроме того, электрохимический потенциал молекул железа, которые в нем содержатся, провоцирует начало электрохимической реакции.

Именно по этой причине рекомендуется тщательная зачистка ржавчины. Однако по ряду причин эту процедуру невозможно провести так, чтобы не осталось ни одной молекулы гидроксида железа. Поэтому реакция окисления и коррозия металла не прекращаются, а лишь значительно замедляются на первом этапе. В последующем скорость процесса увеличивается в геометрической прогрессии и на месте былого кузовного ремонта появляются вспучивания.

Зачистка ржавчины на местах электрохимической коррозии также приносит мало пользы из-за того, что она не устраняет причины – разницы в электрохимических потенциалах металла из разных партий. Многим известно, что «рыжики» на нижних задних углах дверей почти непобедимы. Они появляются вновь и вновь уже через несколько месяцев после тщательной зачистки, грунтовки и покраски. Все дело в конструкции: в этом месте механически (загибом материала) стыкуются внешние детали с силовыми. Многослойный металлический пирог, который по условиям эксплуатации бывает постоянно влажным, – это идеальное место для начала электрохимической коррозии.

Поскольку бороться с коррозией методами механической обработки очень сложно, лучше прибегнуть к активной катодной защите.

Сущность метода

Метод активной катодной защиты основан на том же принципе, который провоцирует электрохимическую коррозию. Вкратце он заключается в следующем: каждый металл, как химический элемент, имеет на своей поверхности электрический заряд, формируемый взаимодействием атомов его кристаллической структуры. В зависимости от величины этого заряда и его потенциала (от плюса к минусу) металлы выстраиваются в электрохимический ряд. Железо в нем занимает промежуточное положение. Левее его находятся цинк, алюминий. Правее – олово, свинец, медь, молибден, хром. Первые при контакте с железом в присутствии электролита разрушаются, а вторые разрушают само железо.

Катодная защита – это электролитический способ восстановления одного металла и разрушения другого при их механическом контакте. Для ее реализации вам потребуются:

  • источник постоянного тока;
  • электролит;
  • металлы с разной электрохимической активностью по отношению к железу.

Сначала ржавчина зачищается привычным способом – шкуркой, скребком, щеткой. После этого берете электрод, менее химически активный, чем железо. Например, полосу из нержавеющей стали, обычно содержащей хром или молибден. Подключаете его к плюсовой клемме автомобильного аккумулятора или зарядного устройства. Кислоту или щелочь можно нанести на обрабатываемую деталь или обмакнуть в нее электрод. При приближении электрода к обрабатываемой детали на поверхности электролита должно начаться бурление. Оно происходит из-за выделения кислорода при разложении гидроксида железа. Время зачистки определяется опытным путем.

Для защиты места ремонта на него наносится слой более активного металла. Подключаете к плюсовой клемме электрод из цинка и делаете все то же самое, но в процессе вы можете наблюдать за тем, как на поверхности ремонтируемой детали образуется оцинковка.

Смываете остатки электролита, сушите, грунтуете и красите.

Если вам не хочется связываться с поиском подходящего электролита и электродов, то воспользуйтесь набором для электрохимического удаления ржавчины «Цинкор-Авто». В нем есть все необходимые ингредиенты. Одной упаковки достаточно для обработки квадратного метра поверхности кузова.

Зачистка ржавчины и нанесение защитного слоя металла на поверхность кузова электрохимическим способом позволит вам не вспоминать о коррозии на протяжении двух-трех лет.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

error: Content is protected !!
Adblock
detector